Solve for x, y
x=60
y=0
Graph
Share
Copied to clipboard
x+3y=60
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
2x-y=120
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
x+3y=60,2x-y=120
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+3y=60
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-3y+60
Subtract 3y from both sides of the equation.
2\left(-3y+60\right)-y=120
Substitute -3y+60 for x in the other equation, 2x-y=120.
-6y+120-y=120
Multiply 2 times -3y+60.
-7y+120=120
Add -6y to -y.
-7y=0
Subtract 120 from both sides of the equation.
y=0
Divide both sides by -7.
x=60
Substitute 0 for y in x=-3y+60. Because the resulting equation contains only one variable, you can solve for x directly.
x=60,y=0
The system is now solved.
x+3y=60
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
2x-y=120
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
x+3y=60,2x-y=120
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&3\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}60\\120\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&3\\2&-1\end{matrix}\right))\left(\begin{matrix}1&3\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\2&-1\end{matrix}\right))\left(\begin{matrix}60\\120\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&3\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\2&-1\end{matrix}\right))\left(\begin{matrix}60\\120\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\2&-1\end{matrix}\right))\left(\begin{matrix}60\\120\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-3\times 2}&-\frac{3}{-1-3\times 2}\\-\frac{2}{-1-3\times 2}&\frac{1}{-1-3\times 2}\end{matrix}\right)\left(\begin{matrix}60\\120\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{3}{7}\\\frac{2}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}60\\120\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 60+\frac{3}{7}\times 120\\\frac{2}{7}\times 60-\frac{1}{7}\times 120\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}60\\0\end{matrix}\right)
Do the arithmetic.
x=60,y=0
Extract the matrix elements x and y.
x+3y=60
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
2x-y=120
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
x+3y=60,2x-y=120
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2x+2\times 3y=2\times 60,2x-y=120
To make x and 2x equal, multiply all terms on each side of the first equation by 2 and all terms on each side of the second by 1.
2x+6y=120,2x-y=120
Simplify.
2x-2x+6y+y=120-120
Subtract 2x-y=120 from 2x+6y=120 by subtracting like terms on each side of the equal sign.
6y+y=120-120
Add 2x to -2x. Terms 2x and -2x cancel out, leaving an equation with only one variable that can be solved.
7y=120-120
Add 6y to y.
7y=0
Add 120 to -120.
y=0
Divide both sides by 7.
2x=120
Substitute 0 for y in 2x-y=120. Because the resulting equation contains only one variable, you can solve for x directly.
x=60
Divide both sides by 2.
x=60,y=0
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}