Solve for x, y, z
x = \frac{19}{10} = 1\frac{9}{10} = 1.9
y=-\frac{4}{5}=-0.8
z=\frac{4}{5}=0.8
Share
Copied to clipboard
y=6x-9z-5
Solve 6x-y-9z=5 for y.
4x+6x-9z-5-z=6 8x+6x-9z-5-8z=8
Substitute 6x-9z-5 for y in the second and third equation.
x=z+\frac{11}{10} z=\frac{14}{17}x-\frac{13}{17}
Solve these equations for x and z respectively.
z=\frac{14}{17}\left(z+\frac{11}{10}\right)-\frac{13}{17}
Substitute z+\frac{11}{10} for x in the equation z=\frac{14}{17}x-\frac{13}{17}.
z=\frac{4}{5}
Solve z=\frac{14}{17}\left(z+\frac{11}{10}\right)-\frac{13}{17} for z.
x=\frac{4}{5}+\frac{11}{10}
Substitute \frac{4}{5} for z in the equation x=z+\frac{11}{10}.
x=\frac{19}{10}
Calculate x from x=\frac{4}{5}+\frac{11}{10}.
y=6\times \frac{19}{10}-9\times \frac{4}{5}-5
Substitute \frac{19}{10} for x and \frac{4}{5} for z in the equation y=6x-9z-5.
y=-\frac{4}{5}
Calculate y from y=6\times \frac{19}{10}-9\times \frac{4}{5}-5.
x=\frac{19}{10} y=-\frac{4}{5} z=\frac{4}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}