Solve for x, y
x=80
y=120
Graph
Share
Copied to clipboard
6x+7y=1320,9x+4y=1200
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
6x+7y=1320
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
6x=-7y+1320
Subtract 7y from both sides of the equation.
x=\frac{1}{6}\left(-7y+1320\right)
Divide both sides by 6.
x=-\frac{7}{6}y+220
Multiply \frac{1}{6} times -7y+1320.
9\left(-\frac{7}{6}y+220\right)+4y=1200
Substitute -\frac{7y}{6}+220 for x in the other equation, 9x+4y=1200.
-\frac{21}{2}y+1980+4y=1200
Multiply 9 times -\frac{7y}{6}+220.
-\frac{13}{2}y+1980=1200
Add -\frac{21y}{2} to 4y.
-\frac{13}{2}y=-780
Subtract 1980 from both sides of the equation.
y=120
Divide both sides of the equation by -\frac{13}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{7}{6}\times 120+220
Substitute 120 for y in x=-\frac{7}{6}y+220. Because the resulting equation contains only one variable, you can solve for x directly.
x=-140+220
Multiply -\frac{7}{6} times 120.
x=80
Add 220 to -140.
x=80,y=120
The system is now solved.
6x+7y=1320,9x+4y=1200
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}6&7\\9&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1320\\1200\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}6&7\\9&4\end{matrix}\right))\left(\begin{matrix}6&7\\9&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&7\\9&4\end{matrix}\right))\left(\begin{matrix}1320\\1200\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}6&7\\9&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&7\\9&4\end{matrix}\right))\left(\begin{matrix}1320\\1200\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&7\\9&4\end{matrix}\right))\left(\begin{matrix}1320\\1200\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{6\times 4-7\times 9}&-\frac{7}{6\times 4-7\times 9}\\-\frac{9}{6\times 4-7\times 9}&\frac{6}{6\times 4-7\times 9}\end{matrix}\right)\left(\begin{matrix}1320\\1200\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{39}&\frac{7}{39}\\\frac{3}{13}&-\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}1320\\1200\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{39}\times 1320+\frac{7}{39}\times 1200\\\frac{3}{13}\times 1320-\frac{2}{13}\times 1200\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}80\\120\end{matrix}\right)
Do the arithmetic.
x=80,y=120
Extract the matrix elements x and y.
6x+7y=1320,9x+4y=1200
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
9\times 6x+9\times 7y=9\times 1320,6\times 9x+6\times 4y=6\times 1200
To make 6x and 9x equal, multiply all terms on each side of the first equation by 9 and all terms on each side of the second by 6.
54x+63y=11880,54x+24y=7200
Simplify.
54x-54x+63y-24y=11880-7200
Subtract 54x+24y=7200 from 54x+63y=11880 by subtracting like terms on each side of the equal sign.
63y-24y=11880-7200
Add 54x to -54x. Terms 54x and -54x cancel out, leaving an equation with only one variable that can be solved.
39y=11880-7200
Add 63y to -24y.
39y=4680
Add 11880 to -7200.
y=120
Divide both sides by 39.
9x+4\times 120=1200
Substitute 120 for y in 9x+4y=1200. Because the resulting equation contains only one variable, you can solve for x directly.
9x+480=1200
Multiply 4 times 120.
9x=720
Subtract 480 from both sides of the equation.
x=80
Divide both sides by 9.
x=80,y=120
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}