Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x+6y=108,6x+15y=162
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
6x+6y=108
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
6x=-6y+108
Subtract 6y from both sides of the equation.
x=\frac{1}{6}\left(-6y+108\right)
Divide both sides by 6.
x=-y+18
Multiply \frac{1}{6} times -6y+108.
6\left(-y+18\right)+15y=162
Substitute -y+18 for x in the other equation, 6x+15y=162.
-6y+108+15y=162
Multiply 6 times -y+18.
9y+108=162
Add -6y to 15y.
9y=54
Subtract 108 from both sides of the equation.
y=6
Divide both sides by 9.
x=-6+18
Substitute 6 for y in x=-y+18. Because the resulting equation contains only one variable, you can solve for x directly.
x=12
Add 18 to -6.
x=12,y=6
The system is now solved.
6x+6y=108,6x+15y=162
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}6&6\\6&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}108\\162\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}6&6\\6&15\end{matrix}\right))\left(\begin{matrix}6&6\\6&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&6\\6&15\end{matrix}\right))\left(\begin{matrix}108\\162\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}6&6\\6&15\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&6\\6&15\end{matrix}\right))\left(\begin{matrix}108\\162\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&6\\6&15\end{matrix}\right))\left(\begin{matrix}108\\162\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{6\times 15-6\times 6}&-\frac{6}{6\times 15-6\times 6}\\-\frac{6}{6\times 15-6\times 6}&\frac{6}{6\times 15-6\times 6}\end{matrix}\right)\left(\begin{matrix}108\\162\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{18}&-\frac{1}{9}\\-\frac{1}{9}&\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}108\\162\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{18}\times 108-\frac{1}{9}\times 162\\-\frac{1}{9}\times 108+\frac{1}{9}\times 162\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\6\end{matrix}\right)
Do the arithmetic.
x=12,y=6
Extract the matrix elements x and y.
6x+6y=108,6x+15y=162
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
6x-6x+6y-15y=108-162
Subtract 6x+15y=162 from 6x+6y=108 by subtracting like terms on each side of the equal sign.
6y-15y=108-162
Add 6x to -6x. Terms 6x and -6x cancel out, leaving an equation with only one variable that can be solved.
-9y=108-162
Add 6y to -15y.
-9y=-54
Add 108 to -162.
y=6
Divide both sides by -9.
6x+15\times 6=162
Substitute 6 for y in 6x+15y=162. Because the resulting equation contains only one variable, you can solve for x directly.
6x+90=162
Multiply 15 times 6.
6x=72
Subtract 90 from both sides of the equation.
x=12
Divide both sides by 6.
x=12,y=6
The system is now solved.