Solve for x, y, z
x=1
y=-2
z=-6
Share
Copied to clipboard
x=-\frac{5}{6}y+\frac{1}{3}z+\frac{4}{3}
Solve 6x+5y-2z=8 for x.
-6\left(-\frac{5}{6}y+\frac{1}{3}z+\frac{4}{3}\right)-6y+5z=-24 -2\left(-\frac{5}{6}y+\frac{1}{3}z+\frac{4}{3}\right)+4y+3z=-28
Substitute -\frac{5}{6}y+\frac{1}{3}z+\frac{4}{3} for x in the second and third equation.
y=16+3z z=-\frac{76}{7}-\frac{17}{7}y
Solve these equations for y and z respectively.
z=-\frac{76}{7}-\frac{17}{7}\left(16+3z\right)
Substitute 16+3z for y in the equation z=-\frac{76}{7}-\frac{17}{7}y.
z=-6
Solve z=-\frac{76}{7}-\frac{17}{7}\left(16+3z\right) for z.
y=16+3\left(-6\right)
Substitute -6 for z in the equation y=16+3z.
y=-2
Calculate y from y=16+3\left(-6\right).
x=-\frac{5}{6}\left(-2\right)+\frac{1}{3}\left(-6\right)+\frac{4}{3}
Substitute -2 for y and -6 for z in the equation x=-\frac{5}{6}y+\frac{1}{3}z+\frac{4}{3}.
x=1
Calculate x from x=-\frac{5}{6}\left(-2\right)+\frac{1}{3}\left(-6\right)+\frac{4}{3}.
x=1 y=-2 z=-6
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}