Solve for x, y
x=10
y=8
Graph
Share
Copied to clipboard
6x+5y=100,15x+20y=310
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
6x+5y=100
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
6x=-5y+100
Subtract 5y from both sides of the equation.
x=\frac{1}{6}\left(-5y+100\right)
Divide both sides by 6.
x=-\frac{5}{6}y+\frac{50}{3}
Multiply \frac{1}{6} times -5y+100.
15\left(-\frac{5}{6}y+\frac{50}{3}\right)+20y=310
Substitute -\frac{5y}{6}+\frac{50}{3} for x in the other equation, 15x+20y=310.
-\frac{25}{2}y+250+20y=310
Multiply 15 times -\frac{5y}{6}+\frac{50}{3}.
\frac{15}{2}y+250=310
Add -\frac{25y}{2} to 20y.
\frac{15}{2}y=60
Subtract 250 from both sides of the equation.
y=8
Divide both sides of the equation by \frac{15}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{5}{6}\times 8+\frac{50}{3}
Substitute 8 for y in x=-\frac{5}{6}y+\frac{50}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-20+50}{3}
Multiply -\frac{5}{6} times 8.
x=10
Add \frac{50}{3} to -\frac{20}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=10,y=8
The system is now solved.
6x+5y=100,15x+20y=310
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}6&5\\15&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\310\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}6&5\\15&20\end{matrix}\right))\left(\begin{matrix}6&5\\15&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\15&20\end{matrix}\right))\left(\begin{matrix}100\\310\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}6&5\\15&20\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\15&20\end{matrix}\right))\left(\begin{matrix}100\\310\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\15&20\end{matrix}\right))\left(\begin{matrix}100\\310\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{6\times 20-5\times 15}&-\frac{5}{6\times 20-5\times 15}\\-\frac{15}{6\times 20-5\times 15}&\frac{6}{6\times 20-5\times 15}\end{matrix}\right)\left(\begin{matrix}100\\310\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{9}&-\frac{1}{9}\\-\frac{1}{3}&\frac{2}{15}\end{matrix}\right)\left(\begin{matrix}100\\310\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{9}\times 100-\frac{1}{9}\times 310\\-\frac{1}{3}\times 100+\frac{2}{15}\times 310\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\8\end{matrix}\right)
Do the arithmetic.
x=10,y=8
Extract the matrix elements x and y.
6x+5y=100,15x+20y=310
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
15\times 6x+15\times 5y=15\times 100,6\times 15x+6\times 20y=6\times 310
To make 6x and 15x equal, multiply all terms on each side of the first equation by 15 and all terms on each side of the second by 6.
90x+75y=1500,90x+120y=1860
Simplify.
90x-90x+75y-120y=1500-1860
Subtract 90x+120y=1860 from 90x+75y=1500 by subtracting like terms on each side of the equal sign.
75y-120y=1500-1860
Add 90x to -90x. Terms 90x and -90x cancel out, leaving an equation with only one variable that can be solved.
-45y=1500-1860
Add 75y to -120y.
-45y=-360
Add 1500 to -1860.
y=8
Divide both sides by -45.
15x+20\times 8=310
Substitute 8 for y in 15x+20y=310. Because the resulting equation contains only one variable, you can solve for x directly.
15x+160=310
Multiply 20 times 8.
15x=150
Subtract 160 from both sides of the equation.
x=10
Divide both sides by 15.
x=10,y=8
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}