Skip to main content
Solve for u, v
Tick mark Image

Similar Problems from Web Search

Share

6u+v=18,5u+2v=22
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
6u+v=18
Choose one of the equations and solve it for u by isolating u on the left hand side of the equal sign.
6u=-v+18
Subtract v from both sides of the equation.
u=\frac{1}{6}\left(-v+18\right)
Divide both sides by 6.
u=-\frac{1}{6}v+3
Multiply \frac{1}{6} times -v+18.
5\left(-\frac{1}{6}v+3\right)+2v=22
Substitute -\frac{v}{6}+3 for u in the other equation, 5u+2v=22.
-\frac{5}{6}v+15+2v=22
Multiply 5 times -\frac{v}{6}+3.
\frac{7}{6}v+15=22
Add -\frac{5v}{6} to 2v.
\frac{7}{6}v=7
Subtract 15 from both sides of the equation.
v=6
Divide both sides of the equation by \frac{7}{6}, which is the same as multiplying both sides by the reciprocal of the fraction.
u=-\frac{1}{6}\times 6+3
Substitute 6 for v in u=-\frac{1}{6}v+3. Because the resulting equation contains only one variable, you can solve for u directly.
u=-1+3
Multiply -\frac{1}{6} times 6.
u=2
Add 3 to -1.
u=2,v=6
The system is now solved.
6u+v=18,5u+2v=22
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}6&1\\5&2\end{matrix}\right)\left(\begin{matrix}u\\v\end{matrix}\right)=\left(\begin{matrix}18\\22\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}6&1\\5&2\end{matrix}\right))\left(\begin{matrix}6&1\\5&2\end{matrix}\right)\left(\begin{matrix}u\\v\end{matrix}\right)=inverse(\left(\begin{matrix}6&1\\5&2\end{matrix}\right))\left(\begin{matrix}18\\22\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}6&1\\5&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}u\\v\end{matrix}\right)=inverse(\left(\begin{matrix}6&1\\5&2\end{matrix}\right))\left(\begin{matrix}18\\22\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}u\\v\end{matrix}\right)=inverse(\left(\begin{matrix}6&1\\5&2\end{matrix}\right))\left(\begin{matrix}18\\22\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}u\\v\end{matrix}\right)=\left(\begin{matrix}\frac{2}{6\times 2-5}&-\frac{1}{6\times 2-5}\\-\frac{5}{6\times 2-5}&\frac{6}{6\times 2-5}\end{matrix}\right)\left(\begin{matrix}18\\22\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}u\\v\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&-\frac{1}{7}\\-\frac{5}{7}&\frac{6}{7}\end{matrix}\right)\left(\begin{matrix}18\\22\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}u\\v\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 18-\frac{1}{7}\times 22\\-\frac{5}{7}\times 18+\frac{6}{7}\times 22\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}u\\v\end{matrix}\right)=\left(\begin{matrix}2\\6\end{matrix}\right)
Do the arithmetic.
u=2,v=6
Extract the matrix elements u and v.
6u+v=18,5u+2v=22
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5\times 6u+5v=5\times 18,6\times 5u+6\times 2v=6\times 22
To make 6u and 5u equal, multiply all terms on each side of the first equation by 5 and all terms on each side of the second by 6.
30u+5v=90,30u+12v=132
Simplify.
30u-30u+5v-12v=90-132
Subtract 30u+12v=132 from 30u+5v=90 by subtracting like terms on each side of the equal sign.
5v-12v=90-132
Add 30u to -30u. Terms 30u and -30u cancel out, leaving an equation with only one variable that can be solved.
-7v=90-132
Add 5v to -12v.
-7v=-42
Add 90 to -132.
v=6
Divide both sides by -7.
5u+2\times 6=22
Substitute 6 for v in 5u+2v=22. Because the resulting equation contains only one variable, you can solve for u directly.
5u+12=22
Multiply 2 times 6.
5u=10
Subtract 12 from both sides of the equation.
u=2
Divide both sides by 5.
u=2,v=6
The system is now solved.