Solve for m, n
m=-\frac{1}{8}=-0.125
n=\frac{1}{24}\approx 0.041666667
Share
Copied to clipboard
8m=-1
Consider the second equation. Combine 4m and 4m to get 8m.
m=-\frac{1}{8}
Divide both sides by 8.
6\left(-\frac{1}{8}\right)-6n=-1
Consider the first equation. Insert the known values of variables into the equation.
-\frac{3}{4}-6n=-1
Multiply 6 and -\frac{1}{8} to get -\frac{3}{4}.
-6n=-1+\frac{3}{4}
Add \frac{3}{4} to both sides.
-6n=-\frac{1}{4}
Add -1 and \frac{3}{4} to get -\frac{1}{4}.
n=\frac{-\frac{1}{4}}{-6}
Divide both sides by -6.
n=\frac{-1}{4\left(-6\right)}
Express \frac{-\frac{1}{4}}{-6} as a single fraction.
n=\frac{-1}{-24}
Multiply 4 and -6 to get -24.
n=\frac{1}{24}
Fraction \frac{-1}{-24} can be simplified to \frac{1}{24} by removing the negative sign from both the numerator and the denominator.
m=-\frac{1}{8} n=\frac{1}{24}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}