Solve for R, b
R=-200
b=2200
Share
Copied to clipboard
6R+b=1000,10R+b=200
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
6R+b=1000
Choose one of the equations and solve it for R by isolating R on the left hand side of the equal sign.
6R=-b+1000
Subtract b from both sides of the equation.
R=\frac{1}{6}\left(-b+1000\right)
Divide both sides by 6.
R=-\frac{1}{6}b+\frac{500}{3}
Multiply \frac{1}{6} times -b+1000.
10\left(-\frac{1}{6}b+\frac{500}{3}\right)+b=200
Substitute -\frac{b}{6}+\frac{500}{3} for R in the other equation, 10R+b=200.
-\frac{5}{3}b+\frac{5000}{3}+b=200
Multiply 10 times -\frac{b}{6}+\frac{500}{3}.
-\frac{2}{3}b+\frac{5000}{3}=200
Add -\frac{5b}{3} to b.
-\frac{2}{3}b=-\frac{4400}{3}
Subtract \frac{5000}{3} from both sides of the equation.
b=2200
Divide both sides of the equation by -\frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
R=-\frac{1}{6}\times 2200+\frac{500}{3}
Substitute 2200 for b in R=-\frac{1}{6}b+\frac{500}{3}. Because the resulting equation contains only one variable, you can solve for R directly.
R=\frac{-1100+500}{3}
Multiply -\frac{1}{6} times 2200.
R=-200
Add \frac{500}{3} to -\frac{1100}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
R=-200,b=2200
The system is now solved.
6R+b=1000,10R+b=200
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}6&1\\10&1\end{matrix}\right)\left(\begin{matrix}R\\b\end{matrix}\right)=\left(\begin{matrix}1000\\200\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}6&1\\10&1\end{matrix}\right))\left(\begin{matrix}6&1\\10&1\end{matrix}\right)\left(\begin{matrix}R\\b\end{matrix}\right)=inverse(\left(\begin{matrix}6&1\\10&1\end{matrix}\right))\left(\begin{matrix}1000\\200\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}6&1\\10&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}R\\b\end{matrix}\right)=inverse(\left(\begin{matrix}6&1\\10&1\end{matrix}\right))\left(\begin{matrix}1000\\200\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}R\\b\end{matrix}\right)=inverse(\left(\begin{matrix}6&1\\10&1\end{matrix}\right))\left(\begin{matrix}1000\\200\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}R\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6-10}&-\frac{1}{6-10}\\-\frac{10}{6-10}&\frac{6}{6-10}\end{matrix}\right)\left(\begin{matrix}1000\\200\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}R\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\\frac{5}{2}&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}1000\\200\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}R\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 1000+\frac{1}{4}\times 200\\\frac{5}{2}\times 1000-\frac{3}{2}\times 200\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}R\\b\end{matrix}\right)=\left(\begin{matrix}-200\\2200\end{matrix}\right)
Do the arithmetic.
R=-200,b=2200
Extract the matrix elements R and b.
6R+b=1000,10R+b=200
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
6R-10R+b-b=1000-200
Subtract 10R+b=200 from 6R+b=1000 by subtracting like terms on each side of the equal sign.
6R-10R=1000-200
Add b to -b. Terms b and -b cancel out, leaving an equation with only one variable that can be solved.
-4R=1000-200
Add 6R to -10R.
-4R=800
Add 1000 to -200.
R=-200
Divide both sides by -4.
10\left(-200\right)+b=200
Substitute -200 for R in 10R+b=200. Because the resulting equation contains only one variable, you can solve for b directly.
-2000+b=200
Multiply 10 times -200.
b=2200
Add 2000 to both sides of the equation.
R=-200,b=2200
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}