Solve for x, y, z
x=-17
y=19
z=0
Share
Copied to clipboard
6\left(x-3\right)+6\left(y-1\right)+3\left(z+4\right)=0 36+x-y-4z=0 15+2x+y-2z=0
Multiply each equation by the least common multiple of denominators in it. Simplify.
36+x-y-4z=0 6\left(x-3\right)+6\left(y-1\right)+3\left(z+4\right)=0 15+2x+y-2z=0
Reorder the equations.
x=-36+y+4z
Solve 36+x-y-4z=0 for x.
6\left(-36+y+4z-3\right)+6\left(y-1\right)+3\left(z+4\right)=0 15+2\left(-36+y+4z\right)+y-2z=0
Substitute -36+y+4z for x in the second and third equation.
y=19-\frac{9}{4}z z=\frac{19}{2}-\frac{1}{2}y
Solve these equations for y and z respectively.
z=\frac{19}{2}-\frac{1}{2}\left(19-\frac{9}{4}z\right)
Substitute 19-\frac{9}{4}z for y in the equation z=\frac{19}{2}-\frac{1}{2}y.
z=0
Solve z=\frac{19}{2}-\frac{1}{2}\left(19-\frac{9}{4}z\right) for z.
y=19-\frac{9}{4}\times 0
Substitute 0 for z in the equation y=19-\frac{9}{4}z.
y=19
Calculate y from y=19-\frac{9}{4}\times 0.
x=-36+19+4\times 0
Substitute 19 for y and 0 for z in the equation x=-36+y+4z.
x=-17
Calculate x from x=-36+19+4\times 0.
x=-17 y=19 z=0
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}