Solve for x, y
x = \frac{7855}{48} = 163\frac{31}{48} \approx 163.645833333
y = \frac{1945}{48} = 40\frac{25}{48} \approx 40.520833333
Graph
Share
Copied to clipboard
6x+6y+8\left(x-y\right)=2210
Consider the first equation. Use the distributive property to multiply 6 by x+y.
6x+6y+8x-8y=2210
Use the distributive property to multiply 8 by x-y.
14x+6y-8y=2210
Combine 6x and 8x to get 14x.
14x-2y=2210
Combine 6y and -8y to get -2y.
3x+3y-4\left(x-y\right)=120
Consider the second equation. Use the distributive property to multiply 3 by x+y.
3x+3y-4x+4y=120
Use the distributive property to multiply -4 by x-y.
-x+3y+4y=120
Combine 3x and -4x to get -x.
-x+7y=120
Combine 3y and 4y to get 7y.
14x-2y=2210,-x+7y=120
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
14x-2y=2210
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
14x=2y+2210
Add 2y to both sides of the equation.
x=\frac{1}{14}\left(2y+2210\right)
Divide both sides by 14.
x=\frac{1}{7}y+\frac{1105}{7}
Multiply \frac{1}{14} times 2210+2y.
-\left(\frac{1}{7}y+\frac{1105}{7}\right)+7y=120
Substitute \frac{1105+y}{7} for x in the other equation, -x+7y=120.
-\frac{1}{7}y-\frac{1105}{7}+7y=120
Multiply -1 times \frac{1105+y}{7}.
\frac{48}{7}y-\frac{1105}{7}=120
Add -\frac{y}{7} to 7y.
\frac{48}{7}y=\frac{1945}{7}
Add \frac{1105}{7} to both sides of the equation.
y=\frac{1945}{48}
Divide both sides of the equation by \frac{48}{7}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{1}{7}\times \frac{1945}{48}+\frac{1105}{7}
Substitute \frac{1945}{48} for y in x=\frac{1}{7}y+\frac{1105}{7}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{1945}{336}+\frac{1105}{7}
Multiply \frac{1}{7} times \frac{1945}{48} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{7855}{48}
Add \frac{1105}{7} to \frac{1945}{336} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{7855}{48},y=\frac{1945}{48}
The system is now solved.
6x+6y+8\left(x-y\right)=2210
Consider the first equation. Use the distributive property to multiply 6 by x+y.
6x+6y+8x-8y=2210
Use the distributive property to multiply 8 by x-y.
14x+6y-8y=2210
Combine 6x and 8x to get 14x.
14x-2y=2210
Combine 6y and -8y to get -2y.
3x+3y-4\left(x-y\right)=120
Consider the second equation. Use the distributive property to multiply 3 by x+y.
3x+3y-4x+4y=120
Use the distributive property to multiply -4 by x-y.
-x+3y+4y=120
Combine 3x and -4x to get -x.
-x+7y=120
Combine 3y and 4y to get 7y.
14x-2y=2210,-x+7y=120
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}14&-2\\-1&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2210\\120\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}14&-2\\-1&7\end{matrix}\right))\left(\begin{matrix}14&-2\\-1&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}14&-2\\-1&7\end{matrix}\right))\left(\begin{matrix}2210\\120\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}14&-2\\-1&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}14&-2\\-1&7\end{matrix}\right))\left(\begin{matrix}2210\\120\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}14&-2\\-1&7\end{matrix}\right))\left(\begin{matrix}2210\\120\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{14\times 7-\left(-2\left(-1\right)\right)}&-\frac{-2}{14\times 7-\left(-2\left(-1\right)\right)}\\-\frac{-1}{14\times 7-\left(-2\left(-1\right)\right)}&\frac{14}{14\times 7-\left(-2\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}2210\\120\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{96}&\frac{1}{48}\\\frac{1}{96}&\frac{7}{48}\end{matrix}\right)\left(\begin{matrix}2210\\120\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{96}\times 2210+\frac{1}{48}\times 120\\\frac{1}{96}\times 2210+\frac{7}{48}\times 120\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7855}{48}\\\frac{1945}{48}\end{matrix}\right)
Do the arithmetic.
x=\frac{7855}{48},y=\frac{1945}{48}
Extract the matrix elements x and y.
6x+6y+8\left(x-y\right)=2210
Consider the first equation. Use the distributive property to multiply 6 by x+y.
6x+6y+8x-8y=2210
Use the distributive property to multiply 8 by x-y.
14x+6y-8y=2210
Combine 6x and 8x to get 14x.
14x-2y=2210
Combine 6y and -8y to get -2y.
3x+3y-4\left(x-y\right)=120
Consider the second equation. Use the distributive property to multiply 3 by x+y.
3x+3y-4x+4y=120
Use the distributive property to multiply -4 by x-y.
-x+3y+4y=120
Combine 3x and -4x to get -x.
-x+7y=120
Combine 3y and 4y to get 7y.
14x-2y=2210,-x+7y=120
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-14x-\left(-2y\right)=-2210,14\left(-1\right)x+14\times 7y=14\times 120
To make 14x and -x equal, multiply all terms on each side of the first equation by -1 and all terms on each side of the second by 14.
-14x+2y=-2210,-14x+98y=1680
Simplify.
-14x+14x+2y-98y=-2210-1680
Subtract -14x+98y=1680 from -14x+2y=-2210 by subtracting like terms on each side of the equal sign.
2y-98y=-2210-1680
Add -14x to 14x. Terms -14x and 14x cancel out, leaving an equation with only one variable that can be solved.
-96y=-2210-1680
Add 2y to -98y.
-96y=-3890
Add -2210 to -1680.
y=\frac{1945}{48}
Divide both sides by -96.
-x+7\times \frac{1945}{48}=120
Substitute \frac{1945}{48} for y in -x+7y=120. Because the resulting equation contains only one variable, you can solve for x directly.
-x+\frac{13615}{48}=120
Multiply 7 times \frac{1945}{48}.
-x=-\frac{7855}{48}
Subtract \frac{13615}{48} from both sides of the equation.
x=\frac{7855}{48}
Divide both sides by -1.
x=\frac{7855}{48},y=\frac{1945}{48}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}