Solve for n, o
o = \frac{1728}{25} = 69\frac{3}{25} = 69.12
Share
Copied to clipboard
\frac{54}{-10}=n
Consider the first equation. Divide both sides by -10.
-\frac{27}{5}=n
Reduce the fraction \frac{54}{-10} to lowest terms by extracting and canceling out 2.
n=-\frac{27}{5}
Swap sides so that all variable terms are on the left hand side.
o=2\left(-\frac{27}{5}\right)^{2}-2\left(-\frac{27}{5}\right)
Consider the second equation. Insert the known values of variables into the equation.
o=2\times \frac{729}{25}-2\left(-\frac{27}{5}\right)
Calculate -\frac{27}{5} to the power of 2 and get \frac{729}{25}.
o=\frac{1458}{25}-2\left(-\frac{27}{5}\right)
Multiply 2 and \frac{729}{25} to get \frac{1458}{25}.
o=\frac{1458}{25}+\frac{54}{5}
Multiply -2 and -\frac{27}{5} to get \frac{54}{5}.
o=\frac{1728}{25}
Add \frac{1458}{25} and \frac{54}{5} to get \frac{1728}{25}.
n=-\frac{27}{5} o=\frac{1728}{25}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}