Solve for a, n
a = \frac{1082835}{22} = 49219\frac{17}{22} \approx 49219.772727273
n=6500
Share
Copied to clipboard
n=6500
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
5250=\frac{11}{2}\left(2a+\left(6500-1\right)\left(-15\right)\right)
Consider the first equation. Insert the known values of variables into the equation.
5250\times \frac{2}{11}=2a+\left(6500-1\right)\left(-15\right)
Multiply both sides by \frac{2}{11}, the reciprocal of \frac{11}{2}.
\frac{10500}{11}=2a+\left(6500-1\right)\left(-15\right)
Multiply 5250 and \frac{2}{11} to get \frac{10500}{11}.
\frac{10500}{11}=2a+6499\left(-15\right)
Subtract 1 from 6500 to get 6499.
\frac{10500}{11}=2a-97485
Multiply 6499 and -15 to get -97485.
2a-97485=\frac{10500}{11}
Swap sides so that all variable terms are on the left hand side.
2a=\frac{10500}{11}+97485
Add 97485 to both sides.
2a=\frac{1082835}{11}
Add \frac{10500}{11} and 97485 to get \frac{1082835}{11}.
a=\frac{\frac{1082835}{11}}{2}
Divide both sides by 2.
a=\frac{1082835}{11\times 2}
Express \frac{\frac{1082835}{11}}{2} as a single fraction.
a=\frac{1082835}{22}
Multiply 11 and 2 to get 22.
a=\frac{1082835}{22} n=6500
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}