Solve for k, b
k=\frac{11}{50}=0.22
b=-90
Share
Copied to clipboard
500k+b=20,1000k+b=130
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
500k+b=20
Choose one of the equations and solve it for k by isolating k on the left hand side of the equal sign.
500k=-b+20
Subtract b from both sides of the equation.
k=\frac{1}{500}\left(-b+20\right)
Divide both sides by 500.
k=-\frac{1}{500}b+\frac{1}{25}
Multiply \frac{1}{500} times -b+20.
1000\left(-\frac{1}{500}b+\frac{1}{25}\right)+b=130
Substitute -\frac{b}{500}+\frac{1}{25} for k in the other equation, 1000k+b=130.
-2b+40+b=130
Multiply 1000 times -\frac{b}{500}+\frac{1}{25}.
-b+40=130
Add -2b to b.
-b=90
Subtract 40 from both sides of the equation.
b=-90
Divide both sides by -1.
k=-\frac{1}{500}\left(-90\right)+\frac{1}{25}
Substitute -90 for b in k=-\frac{1}{500}b+\frac{1}{25}. Because the resulting equation contains only one variable, you can solve for k directly.
k=\frac{9}{50}+\frac{1}{25}
Multiply -\frac{1}{500} times -90.
k=\frac{11}{50}
Add \frac{1}{25} to \frac{9}{50} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
k=\frac{11}{50},b=-90
The system is now solved.
500k+b=20,1000k+b=130
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}500&1\\1000&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}20\\130\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}500&1\\1000&1\end{matrix}\right))\left(\begin{matrix}500&1\\1000&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}500&1\\1000&1\end{matrix}\right))\left(\begin{matrix}20\\130\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}500&1\\1000&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}500&1\\1000&1\end{matrix}\right))\left(\begin{matrix}20\\130\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}k\\b\end{matrix}\right)=inverse(\left(\begin{matrix}500&1\\1000&1\end{matrix}\right))\left(\begin{matrix}20\\130\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{500-1000}&-\frac{1}{500-1000}\\-\frac{1000}{500-1000}&\frac{500}{500-1000}\end{matrix}\right)\left(\begin{matrix}20\\130\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{500}&\frac{1}{500}\\2&-1\end{matrix}\right)\left(\begin{matrix}20\\130\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{500}\times 20+\frac{1}{500}\times 130\\2\times 20-130\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}k\\b\end{matrix}\right)=\left(\begin{matrix}\frac{11}{50}\\-90\end{matrix}\right)
Do the arithmetic.
k=\frac{11}{50},b=-90
Extract the matrix elements k and b.
500k+b=20,1000k+b=130
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
500k-1000k+b-b=20-130
Subtract 1000k+b=130 from 500k+b=20 by subtracting like terms on each side of the equal sign.
500k-1000k=20-130
Add b to -b. Terms b and -b cancel out, leaving an equation with only one variable that can be solved.
-500k=20-130
Add 500k to -1000k.
-500k=-110
Add 20 to -130.
k=\frac{11}{50}
Divide both sides by -500.
1000\times \frac{11}{50}+b=130
Substitute \frac{11}{50} for k in 1000k+b=130. Because the resulting equation contains only one variable, you can solve for b directly.
220+b=130
Multiply 1000 times \frac{11}{50}.
b=-90
Subtract 220 from both sides of the equation.
k=\frac{11}{50},b=-90
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}