Solve for y, x
x = -\frac{22}{5} = -4\frac{2}{5} = -4.4
y = \frac{27}{5} = 5\frac{2}{5} = 5.4
Graph
Share
Copied to clipboard
5y+5x=5,6y+x=28
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5y+5x=5
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
5y=-5x+5
Subtract 5x from both sides of the equation.
y=\frac{1}{5}\left(-5x+5\right)
Divide both sides by 5.
y=-x+1
Multiply \frac{1}{5} times -5x+5.
6\left(-x+1\right)+x=28
Substitute -x+1 for y in the other equation, 6y+x=28.
-6x+6+x=28
Multiply 6 times -x+1.
-5x+6=28
Add -6x to x.
-5x=22
Subtract 6 from both sides of the equation.
x=-\frac{22}{5}
Divide both sides by -5.
y=-\left(-\frac{22}{5}\right)+1
Substitute -\frac{22}{5} for x in y=-x+1. Because the resulting equation contains only one variable, you can solve for y directly.
y=\frac{22}{5}+1
Multiply -1 times -\frac{22}{5}.
y=\frac{27}{5}
Add 1 to \frac{22}{5}.
y=\frac{27}{5},x=-\frac{22}{5}
The system is now solved.
5y+5x=5,6y+x=28
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&5\\6&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\28\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&5\\6&1\end{matrix}\right))\left(\begin{matrix}5&5\\6&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&5\\6&1\end{matrix}\right))\left(\begin{matrix}5\\28\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&5\\6&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&5\\6&1\end{matrix}\right))\left(\begin{matrix}5\\28\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&5\\6&1\end{matrix}\right))\left(\begin{matrix}5\\28\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5-5\times 6}&-\frac{5}{5-5\times 6}\\-\frac{6}{5-5\times 6}&\frac{5}{5-5\times 6}\end{matrix}\right)\left(\begin{matrix}5\\28\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{25}&\frac{1}{5}\\\frac{6}{25}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}5\\28\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{25}\times 5+\frac{1}{5}\times 28\\\frac{6}{25}\times 5-\frac{1}{5}\times 28\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{27}{5}\\-\frac{22}{5}\end{matrix}\right)
Do the arithmetic.
y=\frac{27}{5},x=-\frac{22}{5}
Extract the matrix elements y and x.
5y+5x=5,6y+x=28
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
6\times 5y+6\times 5x=6\times 5,5\times 6y+5x=5\times 28
To make 5y and 6y equal, multiply all terms on each side of the first equation by 6 and all terms on each side of the second by 5.
30y+30x=30,30y+5x=140
Simplify.
30y-30y+30x-5x=30-140
Subtract 30y+5x=140 from 30y+30x=30 by subtracting like terms on each side of the equal sign.
30x-5x=30-140
Add 30y to -30y. Terms 30y and -30y cancel out, leaving an equation with only one variable that can be solved.
25x=30-140
Add 30x to -5x.
25x=-110
Add 30 to -140.
x=-\frac{22}{5}
Divide both sides by 25.
6y-\frac{22}{5}=28
Substitute -\frac{22}{5} for x in 6y+x=28. Because the resulting equation contains only one variable, you can solve for y directly.
6y=\frac{162}{5}
Add \frac{22}{5} to both sides of the equation.
y=\frac{27}{5}
Divide both sides by 6.
y=\frac{27}{5},x=-\frac{22}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}