Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

2x_{1}+x_{2}+5x_{3}-4=0 5x_{1}-8x_{2}-4x_{3}-1=0 3x_{3}-2x_{2}+2x_{3}-2=0
Reorder the equations.
x_{2}=-2x_{1}-5x_{3}+4
Solve 2x_{1}+x_{2}+5x_{3}-4=0 for x_{2}.
5x_{1}-8\left(-2x_{1}-5x_{3}+4\right)-4x_{3}-1=0 3x_{3}-2\left(-2x_{1}-5x_{3}+4\right)+2x_{3}-2=0
Substitute -2x_{1}-5x_{3}+4 for x_{2} in the second and third equation.
x_{1}=\frac{11}{7}-\frac{12}{7}x_{3} x_{3}=\frac{2}{3}-\frac{4}{15}x_{1}
Solve these equations for x_{1} and x_{3} respectively.
x_{3}=\frac{2}{3}-\frac{4}{15}\left(\frac{11}{7}-\frac{12}{7}x_{3}\right)
Substitute \frac{11}{7}-\frac{12}{7}x_{3} for x_{1} in the equation x_{3}=\frac{2}{3}-\frac{4}{15}x_{1}.
x_{3}=\frac{26}{57}
Solve x_{3}=\frac{2}{3}-\frac{4}{15}\left(\frac{11}{7}-\frac{12}{7}x_{3}\right) for x_{3}.
x_{1}=\frac{11}{7}-\frac{12}{7}\times \frac{26}{57}
Substitute \frac{26}{57} for x_{3} in the equation x_{1}=\frac{11}{7}-\frac{12}{7}x_{3}.
x_{1}=\frac{15}{19}
Calculate x_{1} from x_{1}=\frac{11}{7}-\frac{12}{7}\times \frac{26}{57}.
x_{2}=-2\times \frac{15}{19}-5\times \frac{26}{57}+4
Substitute \frac{15}{19} for x_{1} and \frac{26}{57} for x_{3} in the equation x_{2}=-2x_{1}-5x_{3}+4.
x_{2}=\frac{8}{57}
Calculate x_{2} from x_{2}=-2\times \frac{15}{19}-5\times \frac{26}{57}+4.
x_{1}=\frac{15}{19} x_{2}=\frac{8}{57} x_{3}=\frac{26}{57}
The system is now solved.