Solve for x, y
x=8
y=-11
Graph
Share
Copied to clipboard
5x-9y=139,15x+2y=98
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5x-9y=139
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
5x=9y+139
Add 9y to both sides of the equation.
x=\frac{1}{5}\left(9y+139\right)
Divide both sides by 5.
x=\frac{9}{5}y+\frac{139}{5}
Multiply \frac{1}{5} times 9y+139.
15\left(\frac{9}{5}y+\frac{139}{5}\right)+2y=98
Substitute \frac{9y+139}{5} for x in the other equation, 15x+2y=98.
27y+417+2y=98
Multiply 15 times \frac{9y+139}{5}.
29y+417=98
Add 27y to 2y.
29y=-319
Subtract 417 from both sides of the equation.
y=-11
Divide both sides by 29.
x=\frac{9}{5}\left(-11\right)+\frac{139}{5}
Substitute -11 for y in x=\frac{9}{5}y+\frac{139}{5}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-99+139}{5}
Multiply \frac{9}{5} times -11.
x=8
Add \frac{139}{5} to -\frac{99}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=8,y=-11
The system is now solved.
5x-9y=139,15x+2y=98
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&-9\\15&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}139\\98\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&-9\\15&2\end{matrix}\right))\left(\begin{matrix}5&-9\\15&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-9\\15&2\end{matrix}\right))\left(\begin{matrix}139\\98\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&-9\\15&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-9\\15&2\end{matrix}\right))\left(\begin{matrix}139\\98\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-9\\15&2\end{matrix}\right))\left(\begin{matrix}139\\98\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-9\times 15\right)}&-\frac{-9}{5\times 2-\left(-9\times 15\right)}\\-\frac{15}{5\times 2-\left(-9\times 15\right)}&\frac{5}{5\times 2-\left(-9\times 15\right)}\end{matrix}\right)\left(\begin{matrix}139\\98\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{145}&\frac{9}{145}\\-\frac{3}{29}&\frac{1}{29}\end{matrix}\right)\left(\begin{matrix}139\\98\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{145}\times 139+\frac{9}{145}\times 98\\-\frac{3}{29}\times 139+\frac{1}{29}\times 98\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-11\end{matrix}\right)
Do the arithmetic.
x=8,y=-11
Extract the matrix elements x and y.
5x-9y=139,15x+2y=98
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
15\times 5x+15\left(-9\right)y=15\times 139,5\times 15x+5\times 2y=5\times 98
To make 5x and 15x equal, multiply all terms on each side of the first equation by 15 and all terms on each side of the second by 5.
75x-135y=2085,75x+10y=490
Simplify.
75x-75x-135y-10y=2085-490
Subtract 75x+10y=490 from 75x-135y=2085 by subtracting like terms on each side of the equal sign.
-135y-10y=2085-490
Add 75x to -75x. Terms 75x and -75x cancel out, leaving an equation with only one variable that can be solved.
-145y=2085-490
Add -135y to -10y.
-145y=1595
Add 2085 to -490.
y=-11
Divide both sides by -145.
15x+2\left(-11\right)=98
Substitute -11 for y in 15x+2y=98. Because the resulting equation contains only one variable, you can solve for x directly.
15x-22=98
Multiply 2 times -11.
15x=120
Add 22 to both sides of the equation.
x=8
Divide both sides by 15.
x=8,y=-11
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}