Solve for x, y
x=\frac{22}{k-10}
y=-\frac{10\left(k-21\right)}{3\left(k-10\right)}
k\neq 10
Graph
Share
Copied to clipboard
6y-kx=-42
Consider the second equation. Subtract kx from both sides.
5x-3y=10,\left(-k\right)x+6y=-42
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5x-3y=10
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
5x=3y+10
Add 3y to both sides of the equation.
x=\frac{1}{5}\left(3y+10\right)
Divide both sides by 5.
x=\frac{3}{5}y+2
Multiply \frac{1}{5} times 3y+10.
\left(-k\right)\left(\frac{3}{5}y+2\right)+6y=-42
Substitute \frac{3y}{5}+2 for x in the other equation, \left(-k\right)x+6y=-42.
\left(-\frac{3k}{5}\right)y-2k+6y=-42
Multiply -k times \frac{3y}{5}+2.
\left(-\frac{3k}{5}+6\right)y-2k=-42
Add -\frac{3ky}{5} to 6y.
\left(-\frac{3k}{5}+6\right)y=2k-42
Add 2k to both sides of the equation.
y=\frac{10\left(k-21\right)}{3\left(10-k\right)}
Divide both sides by -\frac{3k}{5}+6.
x=\frac{3}{5}\times \frac{10\left(k-21\right)}{3\left(10-k\right)}+2
Substitute \frac{10\left(-21+k\right)}{3\left(-k+10\right)} for y in x=\frac{3}{5}y+2. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{2\left(k-21\right)}{10-k}+2
Multiply \frac{3}{5} times \frac{10\left(-21+k\right)}{3\left(-k+10\right)}.
x=-\frac{22}{10-k}
Add 2 to \frac{2\left(-21+k\right)}{-k+10}.
x=-\frac{22}{10-k},y=\frac{10\left(k-21\right)}{3\left(10-k\right)}
The system is now solved.
6y-kx=-42
Consider the second equation. Subtract kx from both sides.
5x-3y=10,\left(-k\right)x+6y=-42
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&-3\\-k&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-42\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&-3\\-k&6\end{matrix}\right))\left(\begin{matrix}5&-3\\-k&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\-k&6\end{matrix}\right))\left(\begin{matrix}10\\-42\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&-3\\-k&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\-k&6\end{matrix}\right))\left(\begin{matrix}10\\-42\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\-k&6\end{matrix}\right))\left(\begin{matrix}10\\-42\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5\times 6-\left(-3\left(-k\right)\right)}&-\frac{-3}{5\times 6-\left(-3\left(-k\right)\right)}\\-\frac{-k}{5\times 6-\left(-3\left(-k\right)\right)}&\frac{5}{5\times 6-\left(-3\left(-k\right)\right)}\end{matrix}\right)\left(\begin{matrix}10\\-42\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{10-k}&\frac{1}{10-k}\\\frac{k}{3\left(10-k\right)}&\frac{5}{3\left(10-k\right)}\end{matrix}\right)\left(\begin{matrix}10\\-42\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{10-k}\times 10+\frac{1}{10-k}\left(-42\right)\\\frac{k}{3\left(10-k\right)}\times 10+\frac{5}{3\left(10-k\right)}\left(-42\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{22}{10-k}\\-\frac{10\left(21-k\right)}{3\left(10-k\right)}\end{matrix}\right)
Do the arithmetic.
x=-\frac{22}{10-k},y=-\frac{10\left(21-k\right)}{3\left(10-k\right)}
Extract the matrix elements x and y.
6y-kx=-42
Consider the second equation. Subtract kx from both sides.
5x-3y=10,\left(-k\right)x+6y=-42
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
\left(-k\right)\times 5x+\left(-k\right)\left(-3\right)y=\left(-k\right)\times 10,5\left(-k\right)x+5\times 6y=5\left(-42\right)
To make 5x and -kx equal, multiply all terms on each side of the first equation by -k and all terms on each side of the second by 5.
\left(-5k\right)x+3ky=-10k,\left(-5k\right)x+30y=-210
Simplify.
\left(-5k\right)x+5kx+3ky-30y=-10k+210
Subtract \left(-5k\right)x+30y=-210 from \left(-5k\right)x+3ky=-10k by subtracting like terms on each side of the equal sign.
3ky-30y=-10k+210
Add -5kx to 5kx. Terms -5kx and 5kx cancel out, leaving an equation with only one variable that can be solved.
\left(3k-30\right)y=-10k+210
Add 3ky to -30y.
\left(3k-30\right)y=210-10k
Add -10k to 210.
y=\frac{10\left(21-k\right)}{3\left(k-10\right)}
Divide both sides by -30+3k.
\left(-k\right)x+6\times \frac{10\left(21-k\right)}{3\left(k-10\right)}=-42
Substitute \frac{10\left(21-k\right)}{3\left(-10+k\right)} for y in \left(-k\right)x+6y=-42. Because the resulting equation contains only one variable, you can solve for x directly.
\left(-k\right)x+\frac{20\left(21-k\right)}{k-10}=-42
Multiply 6 times \frac{10\left(21-k\right)}{3\left(-10+k\right)}.
\left(-k\right)x=-\frac{22k}{k-10}
Subtract \frac{20\left(21-k\right)}{-10+k} from both sides of the equation.
x=\frac{22}{k-10}
Divide both sides by -k.
x=\frac{22}{k-10},y=\frac{10\left(21-k\right)}{3\left(k-10\right)}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}