Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x-2y=5,10x-3y=35
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5x-2y=5
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
5x=2y+5
Add 2y to both sides of the equation.
x=\frac{1}{5}\left(2y+5\right)
Divide both sides by 5.
x=\frac{2}{5}y+1
Multiply \frac{1}{5} times 2y+5.
10\left(\frac{2}{5}y+1\right)-3y=35
Substitute \frac{2y}{5}+1 for x in the other equation, 10x-3y=35.
4y+10-3y=35
Multiply 10 times \frac{2y}{5}+1.
y+10=35
Add 4y to -3y.
y=25
Subtract 10 from both sides of the equation.
x=\frac{2}{5}\times 25+1
Substitute 25 for y in x=\frac{2}{5}y+1. Because the resulting equation contains only one variable, you can solve for x directly.
x=10+1
Multiply \frac{2}{5} times 25.
x=11
Add 1 to 10.
x=11,y=25
The system is now solved.
5x-2y=5,10x-3y=35
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&-2\\10&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\35\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&-2\\10&-3\end{matrix}\right))\left(\begin{matrix}5&-2\\10&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\10&-3\end{matrix}\right))\left(\begin{matrix}5\\35\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&-2\\10&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\10&-3\end{matrix}\right))\left(\begin{matrix}5\\35\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\10&-3\end{matrix}\right))\left(\begin{matrix}5\\35\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5\left(-3\right)-\left(-2\times 10\right)}&-\frac{-2}{5\left(-3\right)-\left(-2\times 10\right)}\\-\frac{10}{5\left(-3\right)-\left(-2\times 10\right)}&\frac{5}{5\left(-3\right)-\left(-2\times 10\right)}\end{matrix}\right)\left(\begin{matrix}5\\35\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}&\frac{2}{5}\\-2&1\end{matrix}\right)\left(\begin{matrix}5\\35\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}\times 5+\frac{2}{5}\times 35\\-2\times 5+35\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\25\end{matrix}\right)
Do the arithmetic.
x=11,y=25
Extract the matrix elements x and y.
5x-2y=5,10x-3y=35
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10\times 5x+10\left(-2\right)y=10\times 5,5\times 10x+5\left(-3\right)y=5\times 35
To make 5x and 10x equal, multiply all terms on each side of the first equation by 10 and all terms on each side of the second by 5.
50x-20y=50,50x-15y=175
Simplify.
50x-50x-20y+15y=50-175
Subtract 50x-15y=175 from 50x-20y=50 by subtracting like terms on each side of the equal sign.
-20y+15y=50-175
Add 50x to -50x. Terms 50x and -50x cancel out, leaving an equation with only one variable that can be solved.
-5y=50-175
Add -20y to 15y.
-5y=-125
Add 50 to -175.
y=25
Divide both sides by -5.
10x-3\times 25=35
Substitute 25 for y in 10x-3y=35. Because the resulting equation contains only one variable, you can solve for x directly.
10x-75=35
Multiply -3 times 25.
10x=110
Add 75 to both sides of the equation.
x=11
Divide both sides by 10.
x=11,y=25
The system is now solved.