Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+2x-70=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\times 5\left(-70\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{4-4\times 5\left(-70\right)}}{2\times 5}
Square 2.
x=\frac{-2±\sqrt{4-20\left(-70\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-2±\sqrt{4+1400}}{2\times 5}
Multiply -20 times -70.
x=\frac{-2±\sqrt{1404}}{2\times 5}
Add 4 to 1400.
x=\frac{-2±6\sqrt{39}}{2\times 5}
Take the square root of 1404.
x=\frac{-2±6\sqrt{39}}{10}
Multiply 2 times 5.
x=\frac{6\sqrt{39}-2}{10}
Now solve the equation x=\frac{-2±6\sqrt{39}}{10} when ± is plus. Add -2 to 6\sqrt{39}.
x=\frac{3\sqrt{39}-1}{5}
Divide -2+6\sqrt{39} by 10.
x=\frac{-6\sqrt{39}-2}{10}
Now solve the equation x=\frac{-2±6\sqrt{39}}{10} when ± is minus. Subtract 6\sqrt{39} from -2.
x=\frac{-3\sqrt{39}-1}{5}
Divide -2-6\sqrt{39} by 10.
5x^{2}+2x-70=5\left(x-\frac{3\sqrt{39}-1}{5}\right)\left(x-\frac{-3\sqrt{39}-1}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1+3\sqrt{39}}{5} for x_{1} and \frac{-1-3\sqrt{39}}{5} for x_{2}.
x ^ 2 +\frac{2}{5}x -14 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 5
r + s = -\frac{2}{5} rs = -14
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{1}{5} - u s = -\frac{1}{5} + u
Two numbers r and s sum up to -\frac{2}{5} exactly when the average of the two numbers is \frac{1}{2}*-\frac{2}{5} = -\frac{1}{5}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{1}{5} - u) (-\frac{1}{5} + u) = -14
To solve for unknown quantity u, substitute these in the product equation rs = -14
\frac{1}{25} - u^2 = -14
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -14-\frac{1}{25} = -\frac{351}{25}
Simplify the expression by subtracting \frac{1}{25} on both sides
u^2 = \frac{351}{25} u = \pm\sqrt{\frac{351}{25}} = \pm \frac{\sqrt{351}}{5}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{1}{5} - \frac{\sqrt{351}}{5} = -3.947 s = -\frac{1}{5} + \frac{\sqrt{351}}{5} = 3.547
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.