Solve for x, y
x=16
y=20
Graph
Share
Copied to clipboard
5x-4y=0
Consider the first equation. Subtract 4y from both sides.
2x+y=52
Consider the second equation. Reorder the terms.
5x-4y=0,2x+y=52
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5x-4y=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
5x=4y
Add 4y to both sides of the equation.
x=\frac{1}{5}\times 4y
Divide both sides by 5.
x=\frac{4}{5}y
Multiply \frac{1}{5} times 4y.
2\times \frac{4}{5}y+y=52
Substitute \frac{4y}{5} for x in the other equation, 2x+y=52.
\frac{8}{5}y+y=52
Multiply 2 times \frac{4y}{5}.
\frac{13}{5}y=52
Add \frac{8y}{5} to y.
y=20
Divide both sides of the equation by \frac{13}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{4}{5}\times 20
Substitute 20 for y in x=\frac{4}{5}y. Because the resulting equation contains only one variable, you can solve for x directly.
x=16
Multiply \frac{4}{5} times 20.
x=16,y=20
The system is now solved.
5x-4y=0
Consider the first equation. Subtract 4y from both sides.
2x+y=52
Consider the second equation. Reorder the terms.
5x-4y=0,2x+y=52
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&-4\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\52\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&-4\\2&1\end{matrix}\right))\left(\begin{matrix}5&-4\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\2&1\end{matrix}\right))\left(\begin{matrix}0\\52\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&-4\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\2&1\end{matrix}\right))\left(\begin{matrix}0\\52\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\2&1\end{matrix}\right))\left(\begin{matrix}0\\52\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5-\left(-4\times 2\right)}&-\frac{-4}{5-\left(-4\times 2\right)}\\-\frac{2}{5-\left(-4\times 2\right)}&\frac{5}{5-\left(-4\times 2\right)}\end{matrix}\right)\left(\begin{matrix}0\\52\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13}&\frac{4}{13}\\-\frac{2}{13}&\frac{5}{13}\end{matrix}\right)\left(\begin{matrix}0\\52\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{13}\times 52\\\frac{5}{13}\times 52\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16\\20\end{matrix}\right)
Do the arithmetic.
x=16,y=20
Extract the matrix elements x and y.
5x-4y=0
Consider the first equation. Subtract 4y from both sides.
2x+y=52
Consider the second equation. Reorder the terms.
5x-4y=0,2x+y=52
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2\times 5x+2\left(-4\right)y=0,5\times 2x+5y=5\times 52
To make 5x and 2x equal, multiply all terms on each side of the first equation by 2 and all terms on each side of the second by 5.
10x-8y=0,10x+5y=260
Simplify.
10x-10x-8y-5y=-260
Subtract 10x+5y=260 from 10x-8y=0 by subtracting like terms on each side of the equal sign.
-8y-5y=-260
Add 10x to -10x. Terms 10x and -10x cancel out, leaving an equation with only one variable that can be solved.
-13y=-260
Add -8y to -5y.
y=20
Divide both sides by -13.
2x+20=52
Substitute 20 for y in 2x+y=52. Because the resulting equation contains only one variable, you can solve for x directly.
2x=32
Subtract 20 from both sides of the equation.
x=16
Divide both sides by 2.
x=16,y=20
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}