Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x+y=207,2x+3y=166
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5x+y=207
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
5x=-y+207
Subtract y from both sides of the equation.
x=\frac{1}{5}\left(-y+207\right)
Divide both sides by 5.
x=-\frac{1}{5}y+\frac{207}{5}
Multiply \frac{1}{5} times -y+207.
2\left(-\frac{1}{5}y+\frac{207}{5}\right)+3y=166
Substitute \frac{-y+207}{5} for x in the other equation, 2x+3y=166.
-\frac{2}{5}y+\frac{414}{5}+3y=166
Multiply 2 times \frac{-y+207}{5}.
\frac{13}{5}y+\frac{414}{5}=166
Add -\frac{2y}{5} to 3y.
\frac{13}{5}y=\frac{416}{5}
Subtract \frac{414}{5} from both sides of the equation.
y=32
Divide both sides of the equation by \frac{13}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{1}{5}\times 32+\frac{207}{5}
Substitute 32 for y in x=-\frac{1}{5}y+\frac{207}{5}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-32+207}{5}
Multiply -\frac{1}{5} times 32.
x=35
Add \frac{207}{5} to -\frac{32}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=35,y=32
The system is now solved.
5x+y=207,2x+3y=166
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}207\\166\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&1\\2&3\end{matrix}\right))\left(\begin{matrix}5&1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\2&3\end{matrix}\right))\left(\begin{matrix}207\\166\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&1\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\2&3\end{matrix}\right))\left(\begin{matrix}207\\166\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\2&3\end{matrix}\right))\left(\begin{matrix}207\\166\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-2}&-\frac{1}{5\times 3-2}\\-\frac{2}{5\times 3-2}&\frac{5}{5\times 3-2}\end{matrix}\right)\left(\begin{matrix}207\\166\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{13}&-\frac{1}{13}\\-\frac{2}{13}&\frac{5}{13}\end{matrix}\right)\left(\begin{matrix}207\\166\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{13}\times 207-\frac{1}{13}\times 166\\-\frac{2}{13}\times 207+\frac{5}{13}\times 166\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}35\\32\end{matrix}\right)
Do the arithmetic.
x=35,y=32
Extract the matrix elements x and y.
5x+y=207,2x+3y=166
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2\times 5x+2y=2\times 207,5\times 2x+5\times 3y=5\times 166
To make 5x and 2x equal, multiply all terms on each side of the first equation by 2 and all terms on each side of the second by 5.
10x+2y=414,10x+15y=830
Simplify.
10x-10x+2y-15y=414-830
Subtract 10x+15y=830 from 10x+2y=414 by subtracting like terms on each side of the equal sign.
2y-15y=414-830
Add 10x to -10x. Terms 10x and -10x cancel out, leaving an equation with only one variable that can be solved.
-13y=414-830
Add 2y to -15y.
-13y=-416
Add 414 to -830.
y=32
Divide both sides by -13.
2x+3\times 32=166
Substitute 32 for y in 2x+3y=166. Because the resulting equation contains only one variable, you can solve for x directly.
2x+96=166
Multiply 3 times 32.
2x=70
Subtract 96 from both sides of the equation.
x=35
Divide both sides by 2.
x=35,y=32
The system is now solved.