Solve for x, y
x=11
y=11
Graph
Share
Copied to clipboard
5x+6y=121,6x+5y=121
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5x+6y=121
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
5x=-6y+121
Subtract 6y from both sides of the equation.
x=\frac{1}{5}\left(-6y+121\right)
Divide both sides by 5.
x=-\frac{6}{5}y+\frac{121}{5}
Multiply \frac{1}{5} times -6y+121.
6\left(-\frac{6}{5}y+\frac{121}{5}\right)+5y=121
Substitute \frac{-6y+121}{5} for x in the other equation, 6x+5y=121.
-\frac{36}{5}y+\frac{726}{5}+5y=121
Multiply 6 times \frac{-6y+121}{5}.
-\frac{11}{5}y+\frac{726}{5}=121
Add -\frac{36y}{5} to 5y.
-\frac{11}{5}y=-\frac{121}{5}
Subtract \frac{726}{5} from both sides of the equation.
y=11
Divide both sides of the equation by -\frac{11}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{6}{5}\times 11+\frac{121}{5}
Substitute 11 for y in x=-\frac{6}{5}y+\frac{121}{5}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-66+121}{5}
Multiply -\frac{6}{5} times 11.
x=11
Add \frac{121}{5} to -\frac{66}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=11,y=11
The system is now solved.
5x+6y=121,6x+5y=121
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&6\\6&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}121\\121\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&6\\6&5\end{matrix}\right))\left(\begin{matrix}5&6\\6&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\6&5\end{matrix}\right))\left(\begin{matrix}121\\121\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&6\\6&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\6&5\end{matrix}\right))\left(\begin{matrix}121\\121\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\6&5\end{matrix}\right))\left(\begin{matrix}121\\121\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5\times 5-6\times 6}&-\frac{6}{5\times 5-6\times 6}\\-\frac{6}{5\times 5-6\times 6}&\frac{5}{5\times 5-6\times 6}\end{matrix}\right)\left(\begin{matrix}121\\121\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{11}&\frac{6}{11}\\\frac{6}{11}&-\frac{5}{11}\end{matrix}\right)\left(\begin{matrix}121\\121\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{11}\times 121+\frac{6}{11}\times 121\\\frac{6}{11}\times 121-\frac{5}{11}\times 121\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\11\end{matrix}\right)
Do the arithmetic.
x=11,y=11
Extract the matrix elements x and y.
5x+6y=121,6x+5y=121
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
6\times 5x+6\times 6y=6\times 121,5\times 6x+5\times 5y=5\times 121
To make 5x and 6x equal, multiply all terms on each side of the first equation by 6 and all terms on each side of the second by 5.
30x+36y=726,30x+25y=605
Simplify.
30x-30x+36y-25y=726-605
Subtract 30x+25y=605 from 30x+36y=726 by subtracting like terms on each side of the equal sign.
36y-25y=726-605
Add 30x to -30x. Terms 30x and -30x cancel out, leaving an equation with only one variable that can be solved.
11y=726-605
Add 36y to -25y.
11y=121
Add 726 to -605.
y=11
Divide both sides by 11.
6x+5\times 11=121
Substitute 11 for y in 6x+5y=121. Because the resulting equation contains only one variable, you can solve for x directly.
6x+55=121
Multiply 5 times 11.
6x=66
Subtract 55 from both sides of the equation.
x=11
Divide both sides by 6.
x=11,y=11
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}