Solve for x, y
x=-22
y=40
Graph
Share
Copied to clipboard
5x+4y=50,7x+5y=46
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5x+4y=50
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
5x=-4y+50
Subtract 4y from both sides of the equation.
x=\frac{1}{5}\left(-4y+50\right)
Divide both sides by 5.
x=-\frac{4}{5}y+10
Multiply \frac{1}{5} times -4y+50.
7\left(-\frac{4}{5}y+10\right)+5y=46
Substitute -\frac{4y}{5}+10 for x in the other equation, 7x+5y=46.
-\frac{28}{5}y+70+5y=46
Multiply 7 times -\frac{4y}{5}+10.
-\frac{3}{5}y+70=46
Add -\frac{28y}{5} to 5y.
-\frac{3}{5}y=-24
Subtract 70 from both sides of the equation.
y=40
Divide both sides of the equation by -\frac{3}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{4}{5}\times 40+10
Substitute 40 for y in x=-\frac{4}{5}y+10. Because the resulting equation contains only one variable, you can solve for x directly.
x=-32+10
Multiply -\frac{4}{5} times 40.
x=-22
Add 10 to -32.
x=-22,y=40
The system is now solved.
5x+4y=50,7x+5y=46
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&4\\7&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\46\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&4\\7&5\end{matrix}\right))\left(\begin{matrix}5&4\\7&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\7&5\end{matrix}\right))\left(\begin{matrix}50\\46\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&4\\7&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\7&5\end{matrix}\right))\left(\begin{matrix}50\\46\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\7&5\end{matrix}\right))\left(\begin{matrix}50\\46\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5\times 5-4\times 7}&-\frac{4}{5\times 5-4\times 7}\\-\frac{7}{5\times 5-4\times 7}&\frac{5}{5\times 5-4\times 7}\end{matrix}\right)\left(\begin{matrix}50\\46\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{3}&\frac{4}{3}\\\frac{7}{3}&-\frac{5}{3}\end{matrix}\right)\left(\begin{matrix}50\\46\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{3}\times 50+\frac{4}{3}\times 46\\\frac{7}{3}\times 50-\frac{5}{3}\times 46\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-22\\40\end{matrix}\right)
Do the arithmetic.
x=-22,y=40
Extract the matrix elements x and y.
5x+4y=50,7x+5y=46
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
7\times 5x+7\times 4y=7\times 50,5\times 7x+5\times 5y=5\times 46
To make 5x and 7x equal, multiply all terms on each side of the first equation by 7 and all terms on each side of the second by 5.
35x+28y=350,35x+25y=230
Simplify.
35x-35x+28y-25y=350-230
Subtract 35x+25y=230 from 35x+28y=350 by subtracting like terms on each side of the equal sign.
28y-25y=350-230
Add 35x to -35x. Terms 35x and -35x cancel out, leaving an equation with only one variable that can be solved.
3y=350-230
Add 28y to -25y.
3y=120
Add 350 to -230.
y=40
Divide both sides by 3.
7x+5\times 40=46
Substitute 40 for y in 7x+5y=46. Because the resulting equation contains only one variable, you can solve for x directly.
7x+200=46
Multiply 5 times 40.
7x=-154
Subtract 200 from both sides of the equation.
x=-22
Divide both sides by 7.
x=-22,y=40
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}