Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x+3y-4=34,-3x+5y-18=34
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5x+3y-4=34
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
5x+3y=38
Add 4 to both sides of the equation.
5x=-3y+38
Subtract 3y from both sides of the equation.
x=\frac{1}{5}\left(-3y+38\right)
Divide both sides by 5.
x=-\frac{3}{5}y+\frac{38}{5}
Multiply \frac{1}{5} times -3y+38.
-3\left(-\frac{3}{5}y+\frac{38}{5}\right)+5y-18=34
Substitute \frac{-3y+38}{5} for x in the other equation, -3x+5y-18=34.
\frac{9}{5}y-\frac{114}{5}+5y-18=34
Multiply -3 times \frac{-3y+38}{5}.
\frac{34}{5}y-\frac{114}{5}-18=34
Add \frac{9y}{5} to 5y.
\frac{34}{5}y-\frac{204}{5}=34
Add -\frac{114}{5} to -18.
\frac{34}{5}y=\frac{374}{5}
Add \frac{204}{5} to both sides of the equation.
y=11
Divide both sides of the equation by \frac{34}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{3}{5}\times 11+\frac{38}{5}
Substitute 11 for y in x=-\frac{3}{5}y+\frac{38}{5}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-33+38}{5}
Multiply -\frac{3}{5} times 11.
x=1
Add \frac{38}{5} to -\frac{33}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=1,y=11
The system is now solved.
5x+3y-4=34,-3x+5y-18=34
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&3\\-3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}38\\52\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&3\\-3&5\end{matrix}\right))\left(\begin{matrix}5&3\\-3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\-3&5\end{matrix}\right))\left(\begin{matrix}38\\52\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&3\\-3&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\-3&5\end{matrix}\right))\left(\begin{matrix}38\\52\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\-3&5\end{matrix}\right))\left(\begin{matrix}38\\52\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5\times 5-3\left(-3\right)}&-\frac{3}{5\times 5-3\left(-3\right)}\\-\frac{-3}{5\times 5-3\left(-3\right)}&\frac{5}{5\times 5-3\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}38\\52\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{34}&-\frac{3}{34}\\\frac{3}{34}&\frac{5}{34}\end{matrix}\right)\left(\begin{matrix}38\\52\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{34}\times 38-\frac{3}{34}\times 52\\\frac{3}{34}\times 38+\frac{5}{34}\times 52\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\11\end{matrix}\right)
Do the arithmetic.
x=1,y=11
Extract the matrix elements x and y.
5x+3y-4=34,-3x+5y-18=34
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-3\times 5x-3\times 3y-3\left(-4\right)=-3\times 34,5\left(-3\right)x+5\times 5y+5\left(-18\right)=5\times 34
To make 5x and -3x equal, multiply all terms on each side of the first equation by -3 and all terms on each side of the second by 5.
-15x-9y+12=-102,-15x+25y-90=170
Simplify.
-15x+15x-9y-25y+12+90=-102-170
Subtract -15x+25y-90=170 from -15x-9y+12=-102 by subtracting like terms on each side of the equal sign.
-9y-25y+12+90=-102-170
Add -15x to 15x. Terms -15x and 15x cancel out, leaving an equation with only one variable that can be solved.
-34y+12+90=-102-170
Add -9y to -25y.
-34y+102=-102-170
Add 12 to 90.
-34y+102=-272
Add -102 to -170.
-34y=-374
Subtract 102 from both sides of the equation.
y=11
Divide both sides by -34.
-3x+5\times 11-18=34
Substitute 11 for y in -3x+5y-18=34. Because the resulting equation contains only one variable, you can solve for x directly.
-3x+55-18=34
Multiply 5 times 11.
-3x+37=34
Add 55 to -18.
-3x=-3
Subtract 37 from both sides of the equation.
x=1
Divide both sides by -3.
x=1,y=11
The system is now solved.