Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

x=46-2y-3z
Solve 5x+10y+15z=230 for x.
3\left(46-2y-3z\right)-4y+5z=94
Substitute 46-2y-3z for x in the equation 3x-4y+5z=94.
y=\frac{22}{5}-\frac{2}{5}z z=\frac{190}{9}-\frac{5}{3}y
Solve the second equation for y and the third equation for z.
z=\frac{190}{9}-\frac{5}{3}\left(\frac{22}{5}-\frac{2}{5}z\right)
Substitute \frac{22}{5}-\frac{2}{5}z for y in the equation z=\frac{190}{9}-\frac{5}{3}y.
z=\frac{124}{3}
Solve z=\frac{190}{9}-\frac{5}{3}\left(\frac{22}{5}-\frac{2}{5}z\right) for z.
y=\frac{22}{5}-\frac{2}{5}\times \frac{124}{3}
Substitute \frac{124}{3} for z in the equation y=\frac{22}{5}-\frac{2}{5}z.
y=-\frac{182}{15}
Calculate y from y=\frac{22}{5}-\frac{2}{5}\times \frac{124}{3}.
x=46-2\left(-\frac{182}{15}\right)-3\times \frac{124}{3}
Substitute -\frac{182}{15} for y and \frac{124}{3} for z in the equation x=46-2y-3z.
x=-\frac{806}{15}
Calculate x from x=46-2\left(-\frac{182}{15}\right)-3\times \frac{124}{3}.
x=-\frac{806}{15} y=-\frac{182}{15} z=\frac{124}{3}
The system is now solved.