Solve for x, y, z
x = -\frac{806}{15} = -53\frac{11}{15} \approx -53.733333333
y = -\frac{182}{15} = -12\frac{2}{15} \approx -12.133333333
z = \frac{124}{3} = 41\frac{1}{3} \approx 41.333333333
Share
Copied to clipboard
x=46-2y-3z
Solve 5x+10y+15z=230 for x.
3\left(46-2y-3z\right)-4y+5z=94
Substitute 46-2y-3z for x in the equation 3x-4y+5z=94.
y=\frac{22}{5}-\frac{2}{5}z z=\frac{190}{9}-\frac{5}{3}y
Solve the second equation for y and the third equation for z.
z=\frac{190}{9}-\frac{5}{3}\left(\frac{22}{5}-\frac{2}{5}z\right)
Substitute \frac{22}{5}-\frac{2}{5}z for y in the equation z=\frac{190}{9}-\frac{5}{3}y.
z=\frac{124}{3}
Solve z=\frac{190}{9}-\frac{5}{3}\left(\frac{22}{5}-\frac{2}{5}z\right) for z.
y=\frac{22}{5}-\frac{2}{5}\times \frac{124}{3}
Substitute \frac{124}{3} for z in the equation y=\frac{22}{5}-\frac{2}{5}z.
y=-\frac{182}{15}
Calculate y from y=\frac{22}{5}-\frac{2}{5}\times \frac{124}{3}.
x=46-2\left(-\frac{182}{15}\right)-3\times \frac{124}{3}
Substitute -\frac{182}{15} for y and \frac{124}{3} for z in the equation x=46-2y-3z.
x=-\frac{806}{15}
Calculate x from x=46-2\left(-\frac{182}{15}\right)-3\times \frac{124}{3}.
x=-\frac{806}{15} y=-\frac{182}{15} z=\frac{124}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}