Skip to main content
Solve for v_1, v_2, v_3
Tick mark Image

Similar Problems from Web Search

Share

5v_{1}+2v_{2}-2v_{3}=0 v_{1}-v_{2}=25 6v_{1}+3v_{2}+4v_{3}=0
Multiply each equation by the least common multiple of denominators in it. Simplify.
v_{1}-v_{2}=25 5v_{1}+2v_{2}-2v_{3}=0 6v_{1}+3v_{2}+4v_{3}=0
Reorder the equations.
v_{1}=v_{2}+25
Solve v_{1}-v_{2}=25 for v_{1}.
5\left(v_{2}+25\right)+2v_{2}-2v_{3}=0 6\left(v_{2}+25\right)+3v_{2}+4v_{3}=0
Substitute v_{2}+25 for v_{1} in the second and third equation.
v_{2}=-\frac{125}{7}+\frac{2}{7}v_{3} v_{3}=-\frac{75}{2}-\frac{9}{4}v_{2}
Solve these equations for v_{2} and v_{3} respectively.
v_{3}=-\frac{75}{2}-\frac{9}{4}\left(-\frac{125}{7}+\frac{2}{7}v_{3}\right)
Substitute -\frac{125}{7}+\frac{2}{7}v_{3} for v_{2} in the equation v_{3}=-\frac{75}{2}-\frac{9}{4}v_{2}.
v_{3}=\frac{75}{46}
Solve v_{3}=-\frac{75}{2}-\frac{9}{4}\left(-\frac{125}{7}+\frac{2}{7}v_{3}\right) for v_{3}.
v_{2}=-\frac{125}{7}+\frac{2}{7}\times \frac{75}{46}
Substitute \frac{75}{46} for v_{3} in the equation v_{2}=-\frac{125}{7}+\frac{2}{7}v_{3}.
v_{2}=-\frac{400}{23}
Calculate v_{2} from v_{2}=-\frac{125}{7}+\frac{2}{7}\times \frac{75}{46}.
v_{1}=-\frac{400}{23}+25
Substitute -\frac{400}{23} for v_{2} in the equation v_{1}=v_{2}+25.
v_{1}=\frac{175}{23}
Calculate v_{1} from v_{1}=-\frac{400}{23}+25.
v_{1}=\frac{175}{23} v_{2}=-\frac{400}{23} v_{3}=\frac{75}{46}
The system is now solved.