Solve for k, m
k=-\frac{2}{5}=-0.4
m = \frac{43}{30} = 1\frac{13}{30} \approx 1.433333333
Share
Copied to clipboard
5k=9-11
Consider the first equation. Subtract 11 from both sides.
5k=-2
Subtract 11 from 9 to get -2.
k=-\frac{2}{5}
Divide both sides by 5.
6m-9=-\frac{2}{5}
Consider the second equation. Insert the known values of variables into the equation.
6m=-\frac{2}{5}+9
Add 9 to both sides.
6m=\frac{43}{5}
Add -\frac{2}{5} and 9 to get \frac{43}{5}.
m=\frac{\frac{43}{5}}{6}
Divide both sides by 6.
m=\frac{43}{5\times 6}
Express \frac{\frac{43}{5}}{6} as a single fraction.
m=\frac{43}{30}
Multiply 5 and 6 to get 30.
k=-\frac{2}{5} m=\frac{43}{30}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}