Solve for c, d
c=42
d=193
Share
Copied to clipboard
5c-d=17,-13c+3d=33
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5c-d=17
Choose one of the equations and solve it for c by isolating c on the left hand side of the equal sign.
5c=d+17
Add d to both sides of the equation.
c=\frac{1}{5}\left(d+17\right)
Divide both sides by 5.
c=\frac{1}{5}d+\frac{17}{5}
Multiply \frac{1}{5} times d+17.
-13\left(\frac{1}{5}d+\frac{17}{5}\right)+3d=33
Substitute \frac{17+d}{5} for c in the other equation, -13c+3d=33.
-\frac{13}{5}d-\frac{221}{5}+3d=33
Multiply -13 times \frac{17+d}{5}.
\frac{2}{5}d-\frac{221}{5}=33
Add -\frac{13d}{5} to 3d.
\frac{2}{5}d=\frac{386}{5}
Add \frac{221}{5} to both sides of the equation.
d=193
Divide both sides of the equation by \frac{2}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
c=\frac{1}{5}\times 193+\frac{17}{5}
Substitute 193 for d in c=\frac{1}{5}d+\frac{17}{5}. Because the resulting equation contains only one variable, you can solve for c directly.
c=\frac{193+17}{5}
Multiply \frac{1}{5} times 193.
c=42
Add \frac{17}{5} to \frac{193}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
c=42,d=193
The system is now solved.
5c-d=17,-13c+3d=33
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&-1\\-13&3\end{matrix}\right)\left(\begin{matrix}c\\d\end{matrix}\right)=\left(\begin{matrix}17\\33\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&-1\\-13&3\end{matrix}\right))\left(\begin{matrix}5&-1\\-13&3\end{matrix}\right)\left(\begin{matrix}c\\d\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-13&3\end{matrix}\right))\left(\begin{matrix}17\\33\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&-1\\-13&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}c\\d\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-13&3\end{matrix}\right))\left(\begin{matrix}17\\33\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}c\\d\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-13&3\end{matrix}\right))\left(\begin{matrix}17\\33\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}c\\d\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-\left(-\left(-13\right)\right)}&-\frac{-1}{5\times 3-\left(-\left(-13\right)\right)}\\-\frac{-13}{5\times 3-\left(-\left(-13\right)\right)}&\frac{5}{5\times 3-\left(-\left(-13\right)\right)}\end{matrix}\right)\left(\begin{matrix}17\\33\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}c\\d\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}&\frac{1}{2}\\\frac{13}{2}&\frac{5}{2}\end{matrix}\right)\left(\begin{matrix}17\\33\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}c\\d\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\times 17+\frac{1}{2}\times 33\\\frac{13}{2}\times 17+\frac{5}{2}\times 33\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}c\\d\end{matrix}\right)=\left(\begin{matrix}42\\193\end{matrix}\right)
Do the arithmetic.
c=42,d=193
Extract the matrix elements c and d.
5c-d=17,-13c+3d=33
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-13\times 5c-13\left(-1\right)d=-13\times 17,5\left(-13\right)c+5\times 3d=5\times 33
To make 5c and -13c equal, multiply all terms on each side of the first equation by -13 and all terms on each side of the second by 5.
-65c+13d=-221,-65c+15d=165
Simplify.
-65c+65c+13d-15d=-221-165
Subtract -65c+15d=165 from -65c+13d=-221 by subtracting like terms on each side of the equal sign.
13d-15d=-221-165
Add -65c to 65c. Terms -65c and 65c cancel out, leaving an equation with only one variable that can be solved.
-2d=-221-165
Add 13d to -15d.
-2d=-386
Add -221 to -165.
d=193
Divide both sides by -2.
-13c+3\times 193=33
Substitute 193 for d in -13c+3d=33. Because the resulting equation contains only one variable, you can solve for c directly.
-13c+579=33
Multiply 3 times 193.
-13c=-546
Subtract 579 from both sides of the equation.
c=42
Divide both sides by -13.
c=42,d=193
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}