Skip to main content
Solve for b, h
Tick mark Image

Similar Problems from Web Search

Share

5b+3h=339,b+h=45
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5b+3h=339
Choose one of the equations and solve it for b by isolating b on the left hand side of the equal sign.
5b=-3h+339
Subtract 3h from both sides of the equation.
b=\frac{1}{5}\left(-3h+339\right)
Divide both sides by 5.
b=-\frac{3}{5}h+\frac{339}{5}
Multiply \frac{1}{5} times -3h+339.
-\frac{3}{5}h+\frac{339}{5}+h=45
Substitute \frac{-3h+339}{5} for b in the other equation, b+h=45.
\frac{2}{5}h+\frac{339}{5}=45
Add -\frac{3h}{5} to h.
\frac{2}{5}h=-\frac{114}{5}
Subtract \frac{339}{5} from both sides of the equation.
h=-57
Divide both sides of the equation by \frac{2}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
b=-\frac{3}{5}\left(-57\right)+\frac{339}{5}
Substitute -57 for h in b=-\frac{3}{5}h+\frac{339}{5}. Because the resulting equation contains only one variable, you can solve for b directly.
b=\frac{171+339}{5}
Multiply -\frac{3}{5} times -57.
b=102
Add \frac{339}{5} to \frac{171}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
b=102,h=-57
The system is now solved.
5b+3h=339,b+h=45
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&3\\1&1\end{matrix}\right)\left(\begin{matrix}b\\h\end{matrix}\right)=\left(\begin{matrix}339\\45\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&3\\1&1\end{matrix}\right))\left(\begin{matrix}5&3\\1&1\end{matrix}\right)\left(\begin{matrix}b\\h\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\1&1\end{matrix}\right))\left(\begin{matrix}339\\45\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&3\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}b\\h\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\1&1\end{matrix}\right))\left(\begin{matrix}339\\45\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}b\\h\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\1&1\end{matrix}\right))\left(\begin{matrix}339\\45\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}b\\h\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5-3}&-\frac{3}{5-3}\\-\frac{1}{5-3}&\frac{5}{5-3}\end{matrix}\right)\left(\begin{matrix}339\\45\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}b\\h\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{3}{2}\\-\frac{1}{2}&\frac{5}{2}\end{matrix}\right)\left(\begin{matrix}339\\45\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}b\\h\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 339-\frac{3}{2}\times 45\\-\frac{1}{2}\times 339+\frac{5}{2}\times 45\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}b\\h\end{matrix}\right)=\left(\begin{matrix}102\\-57\end{matrix}\right)
Do the arithmetic.
b=102,h=-57
Extract the matrix elements b and h.
5b+3h=339,b+h=45
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5b+3h=339,5b+5h=5\times 45
To make 5b and b equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 5.
5b+3h=339,5b+5h=225
Simplify.
5b-5b+3h-5h=339-225
Subtract 5b+5h=225 from 5b+3h=339 by subtracting like terms on each side of the equal sign.
3h-5h=339-225
Add 5b to -5b. Terms 5b and -5b cancel out, leaving an equation with only one variable that can be solved.
-2h=339-225
Add 3h to -5h.
-2h=114
Add 339 to -225.
h=-57
Divide both sides by -2.
b-57=45
Substitute -57 for h in b+h=45. Because the resulting equation contains only one variable, you can solve for b directly.
b=102
Add 57 to both sides of the equation.
b=102,h=-57
The system is now solved.