Solve for a, b, c
a = \frac{311}{100} = 3\frac{11}{100} = 3.11
b = \frac{431}{100} = 4\frac{31}{100} = 4.31
c = \frac{53}{25} = 2\frac{3}{25} = 2.12
Share
Copied to clipboard
b=5a-2c-7
Solve 5a-b-2c=7 for b.
4\left(5a-2c-7\right)-4-2c=9 7c-2a-2\left(5a-2c-7\right)=0
Substitute 5a-2c-7 for b in the second and third equation.
a=\frac{41}{20}+\frac{1}{2}c c=-\frac{14}{11}+\frac{12}{11}a
Solve these equations for a and c respectively.
c=-\frac{14}{11}+\frac{12}{11}\left(\frac{41}{20}+\frac{1}{2}c\right)
Substitute \frac{41}{20}+\frac{1}{2}c for a in the equation c=-\frac{14}{11}+\frac{12}{11}a.
c=\frac{53}{25}
Solve c=-\frac{14}{11}+\frac{12}{11}\left(\frac{41}{20}+\frac{1}{2}c\right) for c.
a=\frac{41}{20}+\frac{1}{2}\times \frac{53}{25}
Substitute \frac{53}{25} for c in the equation a=\frac{41}{20}+\frac{1}{2}c.
a=\frac{311}{100}
Calculate a from a=\frac{41}{20}+\frac{1}{2}\times \frac{53}{25}.
b=5\times \frac{311}{100}-2\times \frac{53}{25}-7
Substitute \frac{311}{100} for a and \frac{53}{25} for c in the equation b=5a-2c-7.
b=\frac{431}{100}
Calculate b from b=5\times \frac{311}{100}-2\times \frac{53}{25}-7.
a=\frac{311}{100} b=\frac{431}{100} c=\frac{53}{25}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}