Evaluate
0
Factor
0
Share
Copied to clipboard
\frac{40}{8}+\frac{7}{8}+\frac{2}{4}+\frac{1}{3}-\frac{7}{8}-\frac{2}{4}-\frac{1}{3}-5
Convert 5 to fraction \frac{40}{8}.
\frac{40+7}{8}+\frac{2}{4}+\frac{1}{3}-\frac{7}{8}-\frac{2}{4}-\frac{1}{3}-5
Since \frac{40}{8} and \frac{7}{8} have the same denominator, add them by adding their numerators.
\frac{47}{8}+\frac{2}{4}+\frac{1}{3}-\frac{7}{8}-\frac{2}{4}-\frac{1}{3}-5
Add 40 and 7 to get 47.
\frac{47}{8}+\frac{1}{2}+\frac{1}{3}-\frac{7}{8}-\frac{2}{4}-\frac{1}{3}-5
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{47}{8}+\frac{4}{8}+\frac{1}{3}-\frac{7}{8}-\frac{2}{4}-\frac{1}{3}-5
Least common multiple of 8 and 2 is 8. Convert \frac{47}{8} and \frac{1}{2} to fractions with denominator 8.
\frac{47+4}{8}+\frac{1}{3}-\frac{7}{8}-\frac{2}{4}-\frac{1}{3}-5
Since \frac{47}{8} and \frac{4}{8} have the same denominator, add them by adding their numerators.
\frac{51}{8}+\frac{1}{3}-\frac{7}{8}-\frac{2}{4}-\frac{1}{3}-5
Add 47 and 4 to get 51.
\frac{153}{24}+\frac{8}{24}-\frac{7}{8}-\frac{2}{4}-\frac{1}{3}-5
Least common multiple of 8 and 3 is 24. Convert \frac{51}{8} and \frac{1}{3} to fractions with denominator 24.
\frac{153+8}{24}-\frac{7}{8}-\frac{2}{4}-\frac{1}{3}-5
Since \frac{153}{24} and \frac{8}{24} have the same denominator, add them by adding their numerators.
\frac{161}{24}-\frac{7}{8}-\frac{2}{4}-\frac{1}{3}-5
Add 153 and 8 to get 161.
\frac{161}{24}-\frac{21}{24}-\frac{2}{4}-\frac{1}{3}-5
Least common multiple of 24 and 8 is 24. Convert \frac{161}{24} and \frac{7}{8} to fractions with denominator 24.
\frac{161-21}{24}-\frac{2}{4}-\frac{1}{3}-5
Since \frac{161}{24} and \frac{21}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{140}{24}-\frac{2}{4}-\frac{1}{3}-5
Subtract 21 from 161 to get 140.
\frac{35}{6}-\frac{2}{4}-\frac{1}{3}-5
Reduce the fraction \frac{140}{24} to lowest terms by extracting and canceling out 4.
\frac{35}{6}-\frac{1}{2}-\frac{1}{3}-5
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{35}{6}-\frac{3}{6}-\frac{1}{3}-5
Least common multiple of 6 and 2 is 6. Convert \frac{35}{6} and \frac{1}{2} to fractions with denominator 6.
\frac{35-3}{6}-\frac{1}{3}-5
Since \frac{35}{6} and \frac{3}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{32}{6}-\frac{1}{3}-5
Subtract 3 from 35 to get 32.
\frac{16}{3}-\frac{1}{3}-5
Reduce the fraction \frac{32}{6} to lowest terms by extracting and canceling out 2.
\frac{16-1}{3}-5
Since \frac{16}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{15}{3}-5
Subtract 1 from 16 to get 15.
5-5
Divide 15 by 3 to get 5.
0
Subtract 5 from 5 to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}