\left. \begin{array} { l } { 49 - a ^ { 2 } + 8 a b - 16 b ^ { 2 } } \\ { 9 b ^ { 2 } - 16 c ^ { 2 } - 12 a b + 4 a ^ { 2 } } \end{array} \right.
Least Common Multiple
\left(-\left(4b-a\right)^{2}+49\right)\left(\left(2a-3b\right)^{2}-16c^{2}\right)
Evaluate
-\left(a-4b\right)^{2}+49,\ \left(3b-2a\right)^{2}-16c^{2}
Share
Copied to clipboard
-a^{2}-16b^{2}+8ab+49=\left(a-4b-7\right)\left(-a+4b-7\right) -16c^{2}+\left(3b-2a\right)^{2}=\left(2a-3b-4c\right)\left(2a-3b+4c\right)
Factor the expressions that are not already factored.
\left(a-4b-7\right)\left(-a+4b-7\right)\left(2a-3b-4c\right)\left(2a-3b+4c\right)
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
-4a^{4}-169a^{2}b^{2}+16a^{2}c^{2}+196a^{2}+264ab^{3}-128abc^{2}-588ab-144b^{4}+256b^{2}c^{2}+441b^{2}+44ba^{3}-784c^{2}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}