Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

45x+25y=1200,30x+20y=900
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
45x+25y=1200
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
45x=-25y+1200
Subtract 25y from both sides of the equation.
x=\frac{1}{45}\left(-25y+1200\right)
Divide both sides by 45.
x=-\frac{5}{9}y+\frac{80}{3}
Multiply \frac{1}{45} times -25y+1200.
30\left(-\frac{5}{9}y+\frac{80}{3}\right)+20y=900
Substitute -\frac{5y}{9}+\frac{80}{3} for x in the other equation, 30x+20y=900.
-\frac{50}{3}y+800+20y=900
Multiply 30 times -\frac{5y}{9}+\frac{80}{3}.
\frac{10}{3}y+800=900
Add -\frac{50y}{3} to 20y.
\frac{10}{3}y=100
Subtract 800 from both sides of the equation.
y=30
Divide both sides of the equation by \frac{10}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{5}{9}\times 30+\frac{80}{3}
Substitute 30 for y in x=-\frac{5}{9}y+\frac{80}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-50+80}{3}
Multiply -\frac{5}{9} times 30.
x=10
Add \frac{80}{3} to -\frac{50}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=10,y=30
The system is now solved.
45x+25y=1200,30x+20y=900
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}45&25\\30&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1200\\900\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}45&25\\30&20\end{matrix}\right))\left(\begin{matrix}45&25\\30&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}45&25\\30&20\end{matrix}\right))\left(\begin{matrix}1200\\900\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}45&25\\30&20\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}45&25\\30&20\end{matrix}\right))\left(\begin{matrix}1200\\900\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}45&25\\30&20\end{matrix}\right))\left(\begin{matrix}1200\\900\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{45\times 20-25\times 30}&-\frac{25}{45\times 20-25\times 30}\\-\frac{30}{45\times 20-25\times 30}&\frac{45}{45\times 20-25\times 30}\end{matrix}\right)\left(\begin{matrix}1200\\900\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{15}&-\frac{1}{6}\\-\frac{1}{5}&\frac{3}{10}\end{matrix}\right)\left(\begin{matrix}1200\\900\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{15}\times 1200-\frac{1}{6}\times 900\\-\frac{1}{5}\times 1200+\frac{3}{10}\times 900\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\30\end{matrix}\right)
Do the arithmetic.
x=10,y=30
Extract the matrix elements x and y.
45x+25y=1200,30x+20y=900
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
30\times 45x+30\times 25y=30\times 1200,45\times 30x+45\times 20y=45\times 900
To make 45x and 30x equal, multiply all terms on each side of the first equation by 30 and all terms on each side of the second by 45.
1350x+750y=36000,1350x+900y=40500
Simplify.
1350x-1350x+750y-900y=36000-40500
Subtract 1350x+900y=40500 from 1350x+750y=36000 by subtracting like terms on each side of the equal sign.
750y-900y=36000-40500
Add 1350x to -1350x. Terms 1350x and -1350x cancel out, leaving an equation with only one variable that can be solved.
-150y=36000-40500
Add 750y to -900y.
-150y=-4500
Add 36000 to -40500.
y=30
Divide both sides by -150.
30x+20\times 30=900
Substitute 30 for y in 30x+20y=900. Because the resulting equation contains only one variable, you can solve for x directly.
30x+600=900
Multiply 20 times 30.
30x=300
Subtract 600 from both sides of the equation.
x=10
Divide both sides by 30.
x=10,y=30
The system is now solved.