Solve for x, y
x=\frac{52721}{58352}\approx 0.903499452
y=\frac{438}{521}\approx 0.840690979
Graph
Share
Copied to clipboard
1042y=876
Consider the second equation. Combine 594y and 448y to get 1042y.
y=\frac{876}{1042}
Divide both sides by 1042.
y=\frac{438}{521}
Reduce the fraction \frac{876}{1042} to lowest terms by extracting and canceling out 2.
448x+394\times \frac{438}{521}=736
Consider the first equation. Insert the known values of variables into the equation.
448x+\frac{172572}{521}=736
Multiply 394 and \frac{438}{521} to get \frac{172572}{521}.
448x=736-\frac{172572}{521}
Subtract \frac{172572}{521} from both sides.
448x=\frac{210884}{521}
Subtract \frac{172572}{521} from 736 to get \frac{210884}{521}.
x=\frac{\frac{210884}{521}}{448}
Divide both sides by 448.
x=\frac{210884}{521\times 448}
Express \frac{\frac{210884}{521}}{448} as a single fraction.
x=\frac{210884}{233408}
Multiply 521 and 448 to get 233408.
x=\frac{52721}{58352}
Reduce the fraction \frac{210884}{233408} to lowest terms by extracting and canceling out 4.
x=\frac{52721}{58352} y=\frac{438}{521}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}