Solve for x, y
x = \frac{3532}{37} = 95\frac{17}{37} \approx 95.459459459
y = -\frac{715}{37} = -19\frac{12}{37} \approx -19.324324324
Graph
Share
Copied to clipboard
-3x+5y+400=17,5x+4y=400
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-3x+5y+400=17
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
-3x+5y=-383
Subtract 400 from both sides of the equation.
-3x=-5y-383
Subtract 5y from both sides of the equation.
x=-\frac{1}{3}\left(-5y-383\right)
Divide both sides by -3.
x=\frac{5}{3}y+\frac{383}{3}
Multiply -\frac{1}{3} times -5y-383.
5\left(\frac{5}{3}y+\frac{383}{3}\right)+4y=400
Substitute \frac{5y+383}{3} for x in the other equation, 5x+4y=400.
\frac{25}{3}y+\frac{1915}{3}+4y=400
Multiply 5 times \frac{5y+383}{3}.
\frac{37}{3}y+\frac{1915}{3}=400
Add \frac{25y}{3} to 4y.
\frac{37}{3}y=-\frac{715}{3}
Subtract \frac{1915}{3} from both sides of the equation.
y=-\frac{715}{37}
Divide both sides of the equation by \frac{37}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{5}{3}\left(-\frac{715}{37}\right)+\frac{383}{3}
Substitute -\frac{715}{37} for y in x=\frac{5}{3}y+\frac{383}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{3575}{111}+\frac{383}{3}
Multiply \frac{5}{3} times -\frac{715}{37} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{3532}{37}
Add \frac{383}{3} to -\frac{3575}{111} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{3532}{37},y=-\frac{715}{37}
The system is now solved.
-3x+5y+400=17,5x+4y=400
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-3&5\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-383\\400\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-3&5\\5&4\end{matrix}\right))\left(\begin{matrix}-3&5\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\5&4\end{matrix}\right))\left(\begin{matrix}-383\\400\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-3&5\\5&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\5&4\end{matrix}\right))\left(\begin{matrix}-383\\400\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\5&4\end{matrix}\right))\left(\begin{matrix}-383\\400\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{-3\times 4-5\times 5}&-\frac{5}{-3\times 4-5\times 5}\\-\frac{5}{-3\times 4-5\times 5}&-\frac{3}{-3\times 4-5\times 5}\end{matrix}\right)\left(\begin{matrix}-383\\400\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{37}&\frac{5}{37}\\\frac{5}{37}&\frac{3}{37}\end{matrix}\right)\left(\begin{matrix}-383\\400\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{37}\left(-383\right)+\frac{5}{37}\times 400\\\frac{5}{37}\left(-383\right)+\frac{3}{37}\times 400\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3532}{37}\\-\frac{715}{37}\end{matrix}\right)
Do the arithmetic.
x=\frac{3532}{37},y=-\frac{715}{37}
Extract the matrix elements x and y.
-3x+5y+400=17,5x+4y=400
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5\left(-3\right)x+5\times 5y+5\times 400=5\times 17,-3\times 5x-3\times 4y=-3\times 400
To make -3x and 5x equal, multiply all terms on each side of the first equation by 5 and all terms on each side of the second by -3.
-15x+25y+2000=85,-15x-12y=-1200
Simplify.
-15x+15x+25y+12y+2000=85+1200
Subtract -15x-12y=-1200 from -15x+25y+2000=85 by subtracting like terms on each side of the equal sign.
25y+12y+2000=85+1200
Add -15x to 15x. Terms -15x and 15x cancel out, leaving an equation with only one variable that can be solved.
37y+2000=85+1200
Add 25y to 12y.
37y+2000=1285
Add 85 to 1200.
37y=-715
Subtract 2000 from both sides of the equation.
y=-\frac{715}{37}
Divide both sides by 37.
5x+4\left(-\frac{715}{37}\right)=400
Substitute -\frac{715}{37} for y in 5x+4y=400. Because the resulting equation contains only one variable, you can solve for x directly.
5x-\frac{2860}{37}=400
Multiply 4 times -\frac{715}{37}.
5x=\frac{17660}{37}
Add \frac{2860}{37} to both sides of the equation.
x=\frac{3532}{37}
Divide both sides by 5.
x=\frac{3532}{37},y=-\frac{715}{37}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}