Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+16y=400
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
x+40y=640
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
x+16y=400,x+40y=640
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+16y=400
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-16y+400
Subtract 16y from both sides of the equation.
-16y+400+40y=640
Substitute -16y+400 for x in the other equation, x+40y=640.
24y+400=640
Add -16y to 40y.
24y=240
Subtract 400 from both sides of the equation.
y=10
Divide both sides by 24.
x=-16\times 10+400
Substitute 10 for y in x=-16y+400. Because the resulting equation contains only one variable, you can solve for x directly.
x=-160+400
Multiply -16 times 10.
x=240
Add 400 to -160.
x=240,y=10
The system is now solved.
x+16y=400
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
x+40y=640
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
x+16y=400,x+40y=640
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&16\\1&40\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}400\\640\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&16\\1&40\end{matrix}\right))\left(\begin{matrix}1&16\\1&40\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&16\\1&40\end{matrix}\right))\left(\begin{matrix}400\\640\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&16\\1&40\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&16\\1&40\end{matrix}\right))\left(\begin{matrix}400\\640\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&16\\1&40\end{matrix}\right))\left(\begin{matrix}400\\640\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{40}{40-16}&-\frac{16}{40-16}\\-\frac{1}{40-16}&\frac{1}{40-16}\end{matrix}\right)\left(\begin{matrix}400\\640\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}&-\frac{2}{3}\\-\frac{1}{24}&\frac{1}{24}\end{matrix}\right)\left(\begin{matrix}400\\640\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}\times 400-\frac{2}{3}\times 640\\-\frac{1}{24}\times 400+\frac{1}{24}\times 640\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}240\\10\end{matrix}\right)
Do the arithmetic.
x=240,y=10
Extract the matrix elements x and y.
x+16y=400
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
x+40y=640
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
x+16y=400,x+40y=640
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
x-x+16y-40y=400-640
Subtract x+40y=640 from x+16y=400 by subtracting like terms on each side of the equal sign.
16y-40y=400-640
Add x to -x. Terms x and -x cancel out, leaving an equation with only one variable that can be solved.
-24y=400-640
Add 16y to -40y.
-24y=-240
Add 400 to -640.
y=10
Divide both sides by -24.
x+40\times 10=640
Substitute 10 for y in x+40y=640. Because the resulting equation contains only one variable, you can solve for x directly.
x+400=640
Multiply 40 times 10.
x=240
Subtract 400 from both sides of the equation.
x=240,y=10
The system is now solved.