Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

40x+4y=80,8x-15y=-1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
40x+4y=80
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
40x=-4y+80
Subtract 4y from both sides of the equation.
x=\frac{1}{40}\left(-4y+80\right)
Divide both sides by 40.
x=-\frac{1}{10}y+2
Multiply \frac{1}{40} times -4y+80.
8\left(-\frac{1}{10}y+2\right)-15y=-1
Substitute -\frac{y}{10}+2 for x in the other equation, 8x-15y=-1.
-\frac{4}{5}y+16-15y=-1
Multiply 8 times -\frac{y}{10}+2.
-\frac{79}{5}y+16=-1
Add -\frac{4y}{5} to -15y.
-\frac{79}{5}y=-17
Subtract 16 from both sides of the equation.
y=\frac{85}{79}
Divide both sides of the equation by -\frac{79}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{1}{10}\times \frac{85}{79}+2
Substitute \frac{85}{79} for y in x=-\frac{1}{10}y+2. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{17}{158}+2
Multiply -\frac{1}{10} times \frac{85}{79} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{299}{158}
Add 2 to -\frac{17}{158}.
x=\frac{299}{158},y=\frac{85}{79}
The system is now solved.
40x+4y=80,8x-15y=-1
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}40&4\\8&-15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}80\\-1\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}40&4\\8&-15\end{matrix}\right))\left(\begin{matrix}40&4\\8&-15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}40&4\\8&-15\end{matrix}\right))\left(\begin{matrix}80\\-1\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}40&4\\8&-15\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}40&4\\8&-15\end{matrix}\right))\left(\begin{matrix}80\\-1\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}40&4\\8&-15\end{matrix}\right))\left(\begin{matrix}80\\-1\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{15}{40\left(-15\right)-4\times 8}&-\frac{4}{40\left(-15\right)-4\times 8}\\-\frac{8}{40\left(-15\right)-4\times 8}&\frac{40}{40\left(-15\right)-4\times 8}\end{matrix}\right)\left(\begin{matrix}80\\-1\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{632}&\frac{1}{158}\\\frac{1}{79}&-\frac{5}{79}\end{matrix}\right)\left(\begin{matrix}80\\-1\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{632}\times 80+\frac{1}{158}\left(-1\right)\\\frac{1}{79}\times 80-\frac{5}{79}\left(-1\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{299}{158}\\\frac{85}{79}\end{matrix}\right)
Do the arithmetic.
x=\frac{299}{158},y=\frac{85}{79}
Extract the matrix elements x and y.
40x+4y=80,8x-15y=-1
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
8\times 40x+8\times 4y=8\times 80,40\times 8x+40\left(-15\right)y=40\left(-1\right)
To make 40x and 8x equal, multiply all terms on each side of the first equation by 8 and all terms on each side of the second by 40.
320x+32y=640,320x-600y=-40
Simplify.
320x-320x+32y+600y=640+40
Subtract 320x-600y=-40 from 320x+32y=640 by subtracting like terms on each side of the equal sign.
32y+600y=640+40
Add 320x to -320x. Terms 320x and -320x cancel out, leaving an equation with only one variable that can be solved.
632y=640+40
Add 32y to 600y.
632y=680
Add 640 to 40.
y=\frac{85}{79}
Divide both sides by 632.
8x-15\times \frac{85}{79}=-1
Substitute \frac{85}{79} for y in 8x-15y=-1. Because the resulting equation contains only one variable, you can solve for x directly.
8x-\frac{1275}{79}=-1
Multiply -15 times \frac{85}{79}.
8x=\frac{1196}{79}
Add \frac{1275}{79} to both sides of the equation.
x=\frac{299}{158}
Divide both sides by 8.
x=\frac{299}{158},y=\frac{85}{79}
The system is now solved.