Solve for y, z
y = \frac{9}{4} = 2\frac{1}{4} = 2.25
z = -\frac{31}{12} = -2\frac{7}{12} \approx -2.583333333
Share
Copied to clipboard
4y=7+2
Consider the first equation. Add 2 to both sides.
4y=9
Add 7 and 2 to get 9.
y=\frac{9}{4}
Divide both sides by 4.
\frac{9}{4}-3z=10
Consider the second equation. Insert the known values of variables into the equation.
-3z=10-\frac{9}{4}
Subtract \frac{9}{4} from both sides.
-3z=\frac{31}{4}
Subtract \frac{9}{4} from 10 to get \frac{31}{4}.
z=\frac{\frac{31}{4}}{-3}
Divide both sides by -3.
z=\frac{31}{4\left(-3\right)}
Express \frac{\frac{31}{4}}{-3} as a single fraction.
z=\frac{31}{-12}
Multiply 4 and -3 to get -12.
z=-\frac{31}{12}
Fraction \frac{31}{-12} can be rewritten as -\frac{31}{12} by extracting the negative sign.
y=\frac{9}{4} z=-\frac{31}{12}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}