Solve for x, y
x = \frac{21}{20} = 1\frac{1}{20} = 1.05
y = \frac{7}{5} = 1\frac{2}{5} = 1.4
Graph
Share
Copied to clipboard
5y=3+4
Consider the second equation. Add 4 to both sides.
5y=7
Add 3 and 4 to get 7.
y=\frac{7}{5}
Divide both sides by 5.
4x-3\times \frac{7}{5}=0
Consider the first equation. Insert the known values of variables into the equation.
4x-\frac{21}{5}=0
Multiply -3 and \frac{7}{5} to get -\frac{21}{5}.
4x=\frac{21}{5}
Add \frac{21}{5} to both sides. Anything plus zero gives itself.
x=\frac{\frac{21}{5}}{4}
Divide both sides by 4.
x=\frac{21}{5\times 4}
Express \frac{\frac{21}{5}}{4} as a single fraction.
x=\frac{21}{20}
Multiply 5 and 4 to get 20.
x=\frac{21}{20} y=\frac{7}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}