Solve for x, y
x=45
y=-165
Graph
Share
Copied to clipboard
4x+y=15,19x+5y=30
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x+y=15
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
4x=-y+15
Subtract y from both sides of the equation.
x=\frac{1}{4}\left(-y+15\right)
Divide both sides by 4.
x=-\frac{1}{4}y+\frac{15}{4}
Multiply \frac{1}{4} times -y+15.
19\left(-\frac{1}{4}y+\frac{15}{4}\right)+5y=30
Substitute \frac{-y+15}{4} for x in the other equation, 19x+5y=30.
-\frac{19}{4}y+\frac{285}{4}+5y=30
Multiply 19 times \frac{-y+15}{4}.
\frac{1}{4}y+\frac{285}{4}=30
Add -\frac{19y}{4} to 5y.
\frac{1}{4}y=-\frac{165}{4}
Subtract \frac{285}{4} from both sides of the equation.
y=-165
Multiply both sides by 4.
x=-\frac{1}{4}\left(-165\right)+\frac{15}{4}
Substitute -165 for y in x=-\frac{1}{4}y+\frac{15}{4}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{165+15}{4}
Multiply -\frac{1}{4} times -165.
x=45
Add \frac{15}{4} to \frac{165}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=45,y=-165
The system is now solved.
4x+y=15,19x+5y=30
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&1\\19&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\30\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&1\\19&5\end{matrix}\right))\left(\begin{matrix}4&1\\19&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\19&5\end{matrix}\right))\left(\begin{matrix}15\\30\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&1\\19&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\19&5\end{matrix}\right))\left(\begin{matrix}15\\30\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\19&5\end{matrix}\right))\left(\begin{matrix}15\\30\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-19}&-\frac{1}{4\times 5-19}\\-\frac{19}{4\times 5-19}&\frac{4}{4\times 5-19}\end{matrix}\right)\left(\begin{matrix}15\\30\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5&-1\\-19&4\end{matrix}\right)\left(\begin{matrix}15\\30\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\times 15-30\\-19\times 15+4\times 30\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}45\\-165\end{matrix}\right)
Do the arithmetic.
x=45,y=-165
Extract the matrix elements x and y.
4x+y=15,19x+5y=30
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
19\times 4x+19y=19\times 15,4\times 19x+4\times 5y=4\times 30
To make 4x and 19x equal, multiply all terms on each side of the first equation by 19 and all terms on each side of the second by 4.
76x+19y=285,76x+20y=120
Simplify.
76x-76x+19y-20y=285-120
Subtract 76x+20y=120 from 76x+19y=285 by subtracting like terms on each side of the equal sign.
19y-20y=285-120
Add 76x to -76x. Terms 76x and -76x cancel out, leaving an equation with only one variable that can be solved.
-y=285-120
Add 19y to -20y.
-y=165
Add 285 to -120.
y=-165
Divide both sides by -1.
19x+5\left(-165\right)=30
Substitute -165 for y in 19x+5y=30. Because the resulting equation contains only one variable, you can solve for x directly.
19x-825=30
Multiply 5 times -165.
19x=855
Add 825 to both sides of the equation.
x=45
Divide both sides by 19.
x=45,y=-165
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}