Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

4x+9y=12 3y-2z=1 28x+20z=19
Multiply each equation by the least common multiple of denominators in it. Simplify.
x=3-\frac{9}{4}y
Solve 4x+9y=12 for x.
28\left(3-\frac{9}{4}y\right)+20z=19
Substitute 3-\frac{9}{4}y for x in the equation 28x+20z=19.
y=\frac{2}{3}z+\frac{1}{3} z=-\frac{13}{4}+\frac{63}{20}y
Solve the second equation for y and the third equation for z.
z=-\frac{13}{4}+\frac{63}{20}\left(\frac{2}{3}z+\frac{1}{3}\right)
Substitute \frac{2}{3}z+\frac{1}{3} for y in the equation z=-\frac{13}{4}+\frac{63}{20}y.
z=2
Solve z=-\frac{13}{4}+\frac{63}{20}\left(\frac{2}{3}z+\frac{1}{3}\right) for z.
y=\frac{2}{3}\times 2+\frac{1}{3}
Substitute 2 for z in the equation y=\frac{2}{3}z+\frac{1}{3}.
y=\frac{5}{3}
Calculate y from y=\frac{2}{3}\times 2+\frac{1}{3}.
x=3-\frac{9}{4}\times \frac{5}{3}
Substitute \frac{5}{3} for y in the equation x=3-\frac{9}{4}y.
x=-\frac{3}{4}
Calculate x from x=3-\frac{9}{4}\times \frac{5}{3}.
x=-\frac{3}{4} y=\frac{5}{3} z=2
The system is now solved.