Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x+8y=64,2x-8y=86
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x+8y=64
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
4x=-8y+64
Subtract 8y from both sides of the equation.
x=\frac{1}{4}\left(-8y+64\right)
Divide both sides by 4.
x=-2y+16
Multiply \frac{1}{4} times -8y+64.
2\left(-2y+16\right)-8y=86
Substitute -2y+16 for x in the other equation, 2x-8y=86.
-4y+32-8y=86
Multiply 2 times -2y+16.
-12y+32=86
Add -4y to -8y.
-12y=54
Subtract 32 from both sides of the equation.
y=-\frac{9}{2}
Divide both sides by -12.
x=-2\left(-\frac{9}{2}\right)+16
Substitute -\frac{9}{2} for y in x=-2y+16. Because the resulting equation contains only one variable, you can solve for x directly.
x=9+16
Multiply -2 times -\frac{9}{2}.
x=25
Add 16 to 9.
x=25,y=-\frac{9}{2}
The system is now solved.
4x+8y=64,2x-8y=86
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&8\\2&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}64\\86\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&8\\2&-8\end{matrix}\right))\left(\begin{matrix}4&8\\2&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&8\\2&-8\end{matrix}\right))\left(\begin{matrix}64\\86\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&8\\2&-8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&8\\2&-8\end{matrix}\right))\left(\begin{matrix}64\\86\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&8\\2&-8\end{matrix}\right))\left(\begin{matrix}64\\86\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{4\left(-8\right)-8\times 2}&-\frac{8}{4\left(-8\right)-8\times 2}\\-\frac{2}{4\left(-8\right)-8\times 2}&\frac{4}{4\left(-8\right)-8\times 2}\end{matrix}\right)\left(\begin{matrix}64\\86\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{1}{24}&-\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}64\\86\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 64+\frac{1}{6}\times 86\\\frac{1}{24}\times 64-\frac{1}{12}\times 86\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\-\frac{9}{2}\end{matrix}\right)
Do the arithmetic.
x=25,y=-\frac{9}{2}
Extract the matrix elements x and y.
4x+8y=64,2x-8y=86
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2\times 4x+2\times 8y=2\times 64,4\times 2x+4\left(-8\right)y=4\times 86
To make 4x and 2x equal, multiply all terms on each side of the first equation by 2 and all terms on each side of the second by 4.
8x+16y=128,8x-32y=344
Simplify.
8x-8x+16y+32y=128-344
Subtract 8x-32y=344 from 8x+16y=128 by subtracting like terms on each side of the equal sign.
16y+32y=128-344
Add 8x to -8x. Terms 8x and -8x cancel out, leaving an equation with only one variable that can be solved.
48y=128-344
Add 16y to 32y.
48y=-216
Add 128 to -344.
y=-\frac{9}{2}
Divide both sides by 48.
2x-8\left(-\frac{9}{2}\right)=86
Substitute -\frac{9}{2} for y in 2x-8y=86. Because the resulting equation contains only one variable, you can solve for x directly.
2x+36=86
Multiply -8 times -\frac{9}{2}.
2x=50
Subtract 36 from both sides of the equation.
x=25
Divide both sides by 2.
x=25,y=-\frac{9}{2}
The system is now solved.