Solve for x, y
x=1.1875
y=\frac{101}{192}\approx 0.526041667
Graph
Share
Copied to clipboard
4x=11.75-7
Consider the first equation. Subtract 7 from both sides.
4x=4.75
Subtract 7 from 11.75 to get 4.75.
x=\frac{4.75}{4}
Divide both sides by 4.
x=\frac{475}{400}
Expand \frac{4.75}{4} by multiplying both numerator and the denominator by 100.
x=\frac{19}{16}
Reduce the fraction \frac{475}{400} to lowest terms by extracting and canceling out 25.
5\times \frac{19}{16}+12y=12.25
Consider the second equation. Insert the known values of variables into the equation.
\frac{95}{16}+12y=12.25
Multiply 5 and \frac{19}{16} to get \frac{95}{16}.
12y=12.25-\frac{95}{16}
Subtract \frac{95}{16} from both sides.
12y=\frac{101}{16}
Subtract \frac{95}{16} from 12.25 to get \frac{101}{16}.
y=\frac{\frac{101}{16}}{12}
Divide both sides by 12.
y=\frac{101}{16\times 12}
Express \frac{\frac{101}{16}}{12} as a single fraction.
y=\frac{101}{192}
Multiply 16 and 12 to get 192.
x=\frac{19}{16} y=\frac{101}{192}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}