Solve for x, y
x=2
y=8
Graph
Share
Copied to clipboard
4x+4y=40,5x-6y=-38
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x+4y=40
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
4x=-4y+40
Subtract 4y from both sides of the equation.
x=\frac{1}{4}\left(-4y+40\right)
Divide both sides by 4.
x=-y+10
Multiply \frac{1}{4} times -4y+40.
5\left(-y+10\right)-6y=-38
Substitute -y+10 for x in the other equation, 5x-6y=-38.
-5y+50-6y=-38
Multiply 5 times -y+10.
-11y+50=-38
Add -5y to -6y.
-11y=-88
Subtract 50 from both sides of the equation.
y=8
Divide both sides by -11.
x=-8+10
Substitute 8 for y in x=-y+10. Because the resulting equation contains only one variable, you can solve for x directly.
x=2
Add 10 to -8.
x=2,y=8
The system is now solved.
4x+4y=40,5x-6y=-38
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&4\\5&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\-38\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&4\\5&-6\end{matrix}\right))\left(\begin{matrix}4&4\\5&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&4\\5&-6\end{matrix}\right))\left(\begin{matrix}40\\-38\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&4\\5&-6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&4\\5&-6\end{matrix}\right))\left(\begin{matrix}40\\-38\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&4\\5&-6\end{matrix}\right))\left(\begin{matrix}40\\-38\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{4\left(-6\right)-4\times 5}&-\frac{4}{4\left(-6\right)-4\times 5}\\-\frac{5}{4\left(-6\right)-4\times 5}&\frac{4}{4\left(-6\right)-4\times 5}\end{matrix}\right)\left(\begin{matrix}40\\-38\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{22}&\frac{1}{11}\\\frac{5}{44}&-\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}40\\-38\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{22}\times 40+\frac{1}{11}\left(-38\right)\\\frac{5}{44}\times 40-\frac{1}{11}\left(-38\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\8\end{matrix}\right)
Do the arithmetic.
x=2,y=8
Extract the matrix elements x and y.
4x+4y=40,5x-6y=-38
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5\times 4x+5\times 4y=5\times 40,4\times 5x+4\left(-6\right)y=4\left(-38\right)
To make 4x and 5x equal, multiply all terms on each side of the first equation by 5 and all terms on each side of the second by 4.
20x+20y=200,20x-24y=-152
Simplify.
20x-20x+20y+24y=200+152
Subtract 20x-24y=-152 from 20x+20y=200 by subtracting like terms on each side of the equal sign.
20y+24y=200+152
Add 20x to -20x. Terms 20x and -20x cancel out, leaving an equation with only one variable that can be solved.
44y=200+152
Add 20y to 24y.
44y=352
Add 200 to 152.
y=8
Divide both sides by 44.
5x-6\times 8=-38
Substitute 8 for y in 5x-6y=-38. Because the resulting equation contains only one variable, you can solve for x directly.
5x-48=-38
Multiply -6 times 8.
5x=10
Add 48 to both sides of the equation.
x=2
Divide both sides by 5.
x=2,y=8
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}