Solve for x, y
x = \frac{27}{4} = 6\frac{3}{4} = 6.75
y=-3
Graph
Share
Copied to clipboard
-y=3
Consider the second equation. Combine 5y and -6y to get -y.
y=-3
Divide both sides by -1.
4x+3\left(-3\right)=18
Consider the first equation. Insert the known values of variables into the equation.
4x-9=18
Multiply 3 and -3 to get -9.
4x=18+9
Add 9 to both sides.
4x=27
Add 18 and 9 to get 27.
x=\frac{27}{4}
Divide both sides by 4.
x=\frac{27}{4} y=-3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}