Solve for x, y
x = \frac{103}{2} = 51\frac{1}{2} = 51.5
y=-65
Graph
Share
Copied to clipboard
4x+3y=11,2x+y=38
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x+3y=11
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
4x=-3y+11
Subtract 3y from both sides of the equation.
x=\frac{1}{4}\left(-3y+11\right)
Divide both sides by 4.
x=-\frac{3}{4}y+\frac{11}{4}
Multiply \frac{1}{4} times -3y+11.
2\left(-\frac{3}{4}y+\frac{11}{4}\right)+y=38
Substitute \frac{-3y+11}{4} for x in the other equation, 2x+y=38.
-\frac{3}{2}y+\frac{11}{2}+y=38
Multiply 2 times \frac{-3y+11}{4}.
-\frac{1}{2}y+\frac{11}{2}=38
Add -\frac{3y}{2} to y.
-\frac{1}{2}y=\frac{65}{2}
Subtract \frac{11}{2} from both sides of the equation.
y=-65
Multiply both sides by -2.
x=-\frac{3}{4}\left(-65\right)+\frac{11}{4}
Substitute -65 for y in x=-\frac{3}{4}y+\frac{11}{4}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{195+11}{4}
Multiply -\frac{3}{4} times -65.
x=\frac{103}{2}
Add \frac{11}{4} to \frac{195}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{103}{2},y=-65
The system is now solved.
4x+3y=11,2x+y=38
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&3\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\38\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&3\\2&1\end{matrix}\right))\left(\begin{matrix}4&3\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&1\end{matrix}\right))\left(\begin{matrix}11\\38\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&3\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&1\end{matrix}\right))\left(\begin{matrix}11\\38\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&1\end{matrix}\right))\left(\begin{matrix}11\\38\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-3\times 2}&-\frac{3}{4-3\times 2}\\-\frac{2}{4-3\times 2}&\frac{4}{4-3\times 2}\end{matrix}\right)\left(\begin{matrix}11\\38\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{3}{2}\\1&-2\end{matrix}\right)\left(\begin{matrix}11\\38\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 11+\frac{3}{2}\times 38\\11-2\times 38\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{103}{2}\\-65\end{matrix}\right)
Do the arithmetic.
x=\frac{103}{2},y=-65
Extract the matrix elements x and y.
4x+3y=11,2x+y=38
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2\times 4x+2\times 3y=2\times 11,4\times 2x+4y=4\times 38
To make 4x and 2x equal, multiply all terms on each side of the first equation by 2 and all terms on each side of the second by 4.
8x+6y=22,8x+4y=152
Simplify.
8x-8x+6y-4y=22-152
Subtract 8x+4y=152 from 8x+6y=22 by subtracting like terms on each side of the equal sign.
6y-4y=22-152
Add 8x to -8x. Terms 8x and -8x cancel out, leaving an equation with only one variable that can be solved.
2y=22-152
Add 6y to -4y.
2y=-130
Add 22 to -152.
y=-65
Divide both sides by 2.
2x-65=38
Substitute -65 for y in 2x+y=38. Because the resulting equation contains only one variable, you can solve for x directly.
2x=103
Add 65 to both sides of the equation.
x=\frac{103}{2}
Divide both sides by 2.
x=\frac{103}{2},y=-65
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}