Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x+3y=10700,3x+4y=10300
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x+3y=10700
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
4x=-3y+10700
Subtract 3y from both sides of the equation.
x=\frac{1}{4}\left(-3y+10700\right)
Divide both sides by 4.
x=-\frac{3}{4}y+2675
Multiply \frac{1}{4} times -3y+10700.
3\left(-\frac{3}{4}y+2675\right)+4y=10300
Substitute -\frac{3y}{4}+2675 for x in the other equation, 3x+4y=10300.
-\frac{9}{4}y+8025+4y=10300
Multiply 3 times -\frac{3y}{4}+2675.
\frac{7}{4}y+8025=10300
Add -\frac{9y}{4} to 4y.
\frac{7}{4}y=2275
Subtract 8025 from both sides of the equation.
y=1300
Divide both sides of the equation by \frac{7}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{3}{4}\times 1300+2675
Substitute 1300 for y in x=-\frac{3}{4}y+2675. Because the resulting equation contains only one variable, you can solve for x directly.
x=-975+2675
Multiply -\frac{3}{4} times 1300.
x=1700
Add 2675 to -975.
x=1700,y=1300
The system is now solved.
4x+3y=10700,3x+4y=10300
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10700\\10300\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&3\\3&4\end{matrix}\right))\left(\begin{matrix}4&3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&4\end{matrix}\right))\left(\begin{matrix}10700\\10300\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&3\\3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&4\end{matrix}\right))\left(\begin{matrix}10700\\10300\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&4\end{matrix}\right))\left(\begin{matrix}10700\\10300\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4\times 4-3\times 3}&-\frac{3}{4\times 4-3\times 3}\\-\frac{3}{4\times 4-3\times 3}&\frac{4}{4\times 4-3\times 3}\end{matrix}\right)\left(\begin{matrix}10700\\10300\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7}&-\frac{3}{7}\\-\frac{3}{7}&\frac{4}{7}\end{matrix}\right)\left(\begin{matrix}10700\\10300\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7}\times 10700-\frac{3}{7}\times 10300\\-\frac{3}{7}\times 10700+\frac{4}{7}\times 10300\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1700\\1300\end{matrix}\right)
Do the arithmetic.
x=1700,y=1300
Extract the matrix elements x and y.
4x+3y=10700,3x+4y=10300
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3\times 4x+3\times 3y=3\times 10700,4\times 3x+4\times 4y=4\times 10300
To make 4x and 3x equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 4.
12x+9y=32100,12x+16y=41200
Simplify.
12x-12x+9y-16y=32100-41200
Subtract 12x+16y=41200 from 12x+9y=32100 by subtracting like terms on each side of the equal sign.
9y-16y=32100-41200
Add 12x to -12x. Terms 12x and -12x cancel out, leaving an equation with only one variable that can be solved.
-7y=32100-41200
Add 9y to -16y.
-7y=-9100
Add 32100 to -41200.
y=1300
Divide both sides by -7.
3x+4\times 1300=10300
Substitute 1300 for y in 3x+4y=10300. Because the resulting equation contains only one variable, you can solve for x directly.
3x+5200=10300
Multiply 4 times 1300.
3x=5100
Subtract 5200 from both sides of the equation.
x=1700
Divide both sides by 3.
x=1700,y=1300
The system is now solved.