Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

x-4y+5z=3 5x+3y-8z=10 4x+2y-3z=24
Reorder the equations.
x=4y-5z+3
Solve x-4y+5z=3 for x.
5\left(4y-5z+3\right)+3y-8z=10 4\left(4y-5z+3\right)+2y-3z=24
Substitute 4y-5z+3 for x in the second and third equation.
y=\frac{33}{23}z-\frac{5}{23} z=-\frac{12}{23}+\frac{18}{23}y
Solve these equations for y and z respectively.
z=-\frac{12}{23}+\frac{18}{23}\left(\frac{33}{23}z-\frac{5}{23}\right)
Substitute \frac{33}{23}z-\frac{5}{23} for y in the equation z=-\frac{12}{23}+\frac{18}{23}y.
z=\frac{366}{65}
Solve z=-\frac{12}{23}+\frac{18}{23}\left(\frac{33}{23}z-\frac{5}{23}\right) for z.
y=\frac{33}{23}\times \frac{366}{65}-\frac{5}{23}
Substitute \frac{366}{65} for z in the equation y=\frac{33}{23}z-\frac{5}{23}.
y=\frac{511}{65}
Calculate y from y=\frac{33}{23}\times \frac{366}{65}-\frac{5}{23}.
x=4\times \frac{511}{65}-5\times \frac{366}{65}+3
Substitute \frac{511}{65} for y and \frac{366}{65} for z in the equation x=4y-5z+3.
x=\frac{409}{65}
Calculate x from x=4\times \frac{511}{65}-5\times \frac{366}{65}+3.
x=\frac{409}{65} y=\frac{511}{65} z=\frac{366}{65}
The system is now solved.