Solve for x, y, z
x = \frac{409}{65} = 6\frac{19}{65} \approx 6.292307692
y = \frac{511}{65} = 7\frac{56}{65} \approx 7.861538462
z = \frac{366}{65} = 5\frac{41}{65} \approx 5.630769231
Share
Copied to clipboard
x-4y+5z=3 5x+3y-8z=10 4x+2y-3z=24
Reorder the equations.
x=4y-5z+3
Solve x-4y+5z=3 for x.
5\left(4y-5z+3\right)+3y-8z=10 4\left(4y-5z+3\right)+2y-3z=24
Substitute 4y-5z+3 for x in the second and third equation.
y=\frac{33}{23}z-\frac{5}{23} z=-\frac{12}{23}+\frac{18}{23}y
Solve these equations for y and z respectively.
z=-\frac{12}{23}+\frac{18}{23}\left(\frac{33}{23}z-\frac{5}{23}\right)
Substitute \frac{33}{23}z-\frac{5}{23} for y in the equation z=-\frac{12}{23}+\frac{18}{23}y.
z=\frac{366}{65}
Solve z=-\frac{12}{23}+\frac{18}{23}\left(\frac{33}{23}z-\frac{5}{23}\right) for z.
y=\frac{33}{23}\times \frac{366}{65}-\frac{5}{23}
Substitute \frac{366}{65} for z in the equation y=\frac{33}{23}z-\frac{5}{23}.
y=\frac{511}{65}
Calculate y from y=\frac{33}{23}\times \frac{366}{65}-\frac{5}{23}.
x=4\times \frac{511}{65}-5\times \frac{366}{65}+3
Substitute \frac{511}{65} for y and \frac{366}{65} for z in the equation x=4y-5z+3.
x=\frac{409}{65}
Calculate x from x=4\times \frac{511}{65}-5\times \frac{366}{65}+3.
x=\frac{409}{65} y=\frac{511}{65} z=\frac{366}{65}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}