Solve for x, y
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
y = -\frac{45}{16} = -2\frac{13}{16} = -2.8125
Graph
Share
Copied to clipboard
4x=8-2
Consider the first equation. Subtract 2 from both sides.
4x=6
Subtract 2 from 8 to get 6.
x=\frac{6}{4}
Divide both sides by 4.
x=\frac{3}{2}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
2\times \frac{3}{2}+y=\frac{\frac{3}{2}}{8}
Consider the second equation. Insert the known values of variables into the equation.
3+y=\frac{\frac{3}{2}}{8}
Multiply 2 and \frac{3}{2} to get 3.
3+y=\frac{3}{2\times 8}
Express \frac{\frac{3}{2}}{8} as a single fraction.
3+y=\frac{3}{16}
Multiply 2 and 8 to get 16.
y=\frac{3}{16}-3
Subtract 3 from both sides.
y=-\frac{45}{16}
Subtract 3 from \frac{3}{16} to get -\frac{45}{16}.
x=\frac{3}{2} y=-\frac{45}{16}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}